首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring bee and wasp community habitat preferences in natural systems may provide insights for biodiversity management and conservation as habitat heterogeneity can be the major factor affecting species diversity in a community. Here, we present evidence that supports the use of a vegetation structure-based approach in order to predict the occurrence of common Brazilian-remnant solitary bee and wasp species. Using trap nests, we sampled Aculeate bees and wasps in a forest remnant within an urban area of southeast Brazil. We also measured eight habitat structure components in the area. Tree trunk circumference, shrub and wood log abundance were good predictors of presence or absence of the commonest solitary bee and wasp species in the study area. We demonstrated that even on a small scale it is possible to detect significant influences of habitat structural features on species occurrences and that some of them are effective as surrogates for predicting trap-nesting Hymenoptera occurrence in a given area. Our data present evidence on the potential application of a habitat structure-based approach in conservation assessments concerning cavity-nesting Hymenoptera. We caution, however, that this habitat structure-based approach must to be taken with prudence as a detailed survey of an area’s biodiversity is always preferable.  相似文献   

2.
Habitat heterogeneity can be the major factor affecting species diversity in a community and measuring bee and wasp community habitat preferences in natural systems may provide insights for biodiversity management and conservation. In the present study, we investigate the effects of habitat structure components on solitary bee and wasp species richness and abundance. The research was conducted in an urban forest remnant in southeast Brazil. Our main questions were: (1) is similarity in habitat structure mirrored by similarity in Aculeate assemblage composition? and (2) what are the vegetation features that could be used as predictors of solitary bee and wasp richness and abundance? Aculeate bees and wasps were sampled using trap nests from February to November 2004. Trap nests were placed in sampling units located in 6 ha of secondary mesophytic forest. One hundred and thirty-seven trap nests were occupied by four species of wasps and seven species of bees. Altogether, our sampling units had a mean capture rate (relative to expected richness) of 72% during all the study period. The more similar sampling units were in terms of vegetation structure, the more similar they were in solitary bee and wasp species composition. The variance of tree abundance, shrub height and the abundance of wood logs were good predictors of solitary bee and wasp species richness and abundance in the study area. We demonstrate that even in a small scale it is possible to detect significant influences of habitat features on alpha diversity and that some of them are effective as predictors of trap-nesting Hymenoptera richness and abundance.  相似文献   

3.
In the honey bee no allatotropin gene has been found, even though allatotropin stimulates the synthesis of juvenile hormone in this species. We report here that honey bees and other Hymenoptera do have a typical allatotropin gene, although the peptides predicted have a somewhat different structure from that of other insect allatotropins. Polyclonal antisera to honey bee allatotropin reacted with material in the neurohemal organs of the segmental nerves of abdominal ganglia. We were unable to find the allatotropin peptide using mass spectrometry in extracts from these tissues. Thus the expression of this gene in honey bees is less important than in other insect species. We also characterized the leucokinin gene which similarly appears to be very weakly expressed in worker honey bees. Unlike the allatotropin gene, which is conserved within Hymenoptera, the leucokinin gene is much more variable in structure and was not found in ants nor the parasitic wasp Nasonia vitripennis. The absence of significant expression of adipokinetic hormone (AKH) in the honey bee may be due to the existence of a second TATA box in the promotor region of the gene, which explains the production of an mRNA encoding a putative peptide precursor from which no AKH should be released. Such a second TATA box was not found in other Hymenoptera, and may therefore be specific for the two Apis species. It is suggested that functional disintegration of this important metabolic gene became possible in Apis because of the highly evolved social nature of the species.  相似文献   

4.
Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts.  相似文献   

5.
The vitellogenin (Vg) gene of the parasitoid wasp, Encarsia formosa (Hymenoptera: Aphelinidae), has been cloned and sequenced. The gene codes for a protein consisting of 1814 amino acids in seven exons. The position of the six introns in the E. formosa gene align with those inferred for the Vg gene of the honeybee, Apis mellifera. The position of two introns in the hymenopteran sequences are shared with every full-length insect Vg gene characterized to date. The deduced amino acid sequence of the E. formosa Vg gene most closely resembles that of the ichneumonid parasitoid, Pimpla nipponica (38% identity). The gene product, less the putative signal peptide, contains large quantities of serine (11.3% of total residues) but lacks the extensive polyserine tracts found in the Vgs of insects outside the apocritan Hymenoptera. The gene also codes for the highest level of lysine (9.5%), and lowest levels of phenylalanine (2.6%) and tyrosine (2.3%), observed in any insect Vg characterized to date. The mature gene product retains 12 cysteine residues in positions conserved in other insect Vgs. Ovary homogenates suggest that processed Vg is stored in the egg as an uncleaved molecule of approximately 200 kDa. Vg expression was examined in three additional Encarsia species. The protein was found in female E. sophia and E. luteola, but not in male E. luteola or female E. pergandiella. Despite extensive screening of a phage library prepared from E. pergandiella genomic DNA, a Vg gene was not detected in this species.  相似文献   

6.
To evaluate the role that a trap‐nest cover might have on sampling methodologies, the abundance of each species of trap‐nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap‐nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae, Sphecidae and Pompilidae emerged over 2 years, and no bee species were found. Results indicated that artificial covering led to a significant increase in the number of nested tubes of Ancistrocerus adiabatus, Ancistrocerus antilope, Ancistrocerus campestris and Auplopus mellipes, and significant effects of covering were not found for the other species. No significant difference in the overall parasitism rate between covered and uncovered traps was noted. These suggested that the covering technique could provide more opportunities for some wasp species to colonize trap nests.  相似文献   

7.
Restriction enzyme cleavage maps of mitochondrial DNA from the Spanish honeybee, Apis mellifera iberica (Hymenoptera: Apidae), were compared with those from the European subspecies A. m. mellifera, A. m. ligustica, and A. m. carnica, and the African subspecies A. m. intermissa and A. m. scutellata. The mitochondrial DNA (mtDNA) of the two African subspecies can be distinguished by restriction fragment polymorphisms revealed by Hinf I digests. Two distinct mtDNA types were found among Spanish honeybees: a west European mellifera-like type, which predominates in the north of Spain, and an African intermissa-like type, which predominates in the south. Spain appears to be a region of contact and hybridization between the two subspecies A. m. intermissa and A. m. mellifera, which respectively represent African and west European honeybee lineages. This natural boundary between European and African honeybee populations in the Old World may provide a model for predicting the eventual outcome of the colonization of North America by introduced African honeybees.  相似文献   

8.
Transferred copies of mitochondrial DNA (mtDNA) into the nuclear genome (numts) have been reported in several Hymenoptera species, even at a high density in the honey bee nuclear genome. The accidental amplification of numts in phylogenetic studies focused on mtDNA highlights the importance of a correct determination of numts and their related mtDNA sequences. We report here the presence of numts derived from a mitochondrial rDNA 16S gene in the genome of the stingless bee species Melipona colimana and M. fasciata (tribe Meliponini) from Western Mexico. PCR products were cloned in both species obtaining thirty paralogous numts. Numts were identified by the presence of insertions and deletions and the disruption of the 16S secondary structure. Further phylogenetic analyses including alternative mitochondrial cox1 and nuclear ITS1 genes have revealed the presence of another numt (cox1) in the nuclear genome of these two species, and place both as sister lineages within the subgenus Michmelia. This is one of the first studies reporting the presence of numts in Meliponini species, and supports previous studies suggesting frequent transfer of mtDNA to the nuclear genome in Hymenoptera.  相似文献   

9.
Studies on the role of juvenile hormone (JH) in adult social Hymenoptera have focused on the regulation of two fundamental aspects of colony organization: reproductive division of labor between queens and workers and age-related division of labor among workers. JH acts as a gonadotropin in the primitively eusocial wasp and bumble bee species studied, and may also play this role in the advanced eusocial fire ants. However, there is no evidence that JH acts as a traditional gonadotropin in the advanced eusocial honey bee or in the few other ant species that have recently begun to be studied. The role of JH in age-related division of labor has been most thoroughly examined in honey bees. Results of these studies demonstrate that JH acts as a “behavioral pacemaker,” influencing how fast a worker grows up and makes the transition from nest activities to foraging. Hypotheses concerning the evolutionary relationship between the two functions of JH in adult eusocial Hymenoptera are discussed. Arch. Insect Biochem. Physiol. 35:559–583, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.

Background

Host-parasite interactions are among the most important biotic relationships. Host species should evolve mechanisms to detect their enemies and employ appropriate counterstrategies. Parasites, in turn, should evolve mechanisms to evade detection and thus maximize their success. Females of the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) hunt exclusively honeybee workers as food for their progeny. The brood cells containing the paralyzed bees are severely threatened by a highly specialized cuckoo wasp (Hedychrum rutilans, Hymenoptera, Chrysididae). Female cuckoo wasps enter beewolf nests to oviposit on paralyzed bees that are temporarily couched in the nest burrow. The cuckoo wasp larva kills the beewolf larva and feeds on it and the bees. Here, we investigated whether H. rutilans evades detection by its host. Since chemical senses are most important in the dark nest, we hypothesized that the cuckoo wasp might employ chemical camouflage.

Results

Field observations suggest that cuckoo wasps are attacked by beewolves in front of their nest, most probably after being recognized visually. In contrast, beewolves seem not to detect signs of the presence of these parasitoids neither when these had visited the nest nor when directly encountered in the dark nest burrow. In a recognition bioassay in observation cages, beewolf females responded significantly less frequently to filter paper discs treated with a cuticular extract from H. rutilans females, than to filter paper discs treated with an extract from another cuckoo wasp species (Chrysis viridula). The behavior to paper discs treated with a cuticular extract from H. rutilans females did not differ significantly from the behavior towards filter paper discs treated with the solvent only. We hypothesized that cuckoo wasps either mimic the chemistry of their beewolf host or their host's prey. We tested this hypothesis using GC-MS analyses of the cuticles of male and female beewolves, cuckoo wasps, and honeybee workers. Cuticle extracts of Hedychrum nobile (Hymenoptera: Chrysididae) and Cerceris arenaria (Hymenoptera: Crabronidae) were used as outgroups. There was little congruence with regard to cuticular compounds between H. rutilans females and honeybees as well as females of C. arenaria and H. nobile. However, there was a considerable similarity between beewolf females and H. rutilans females. Beewolf females show a striking dimorphism regarding their cuticular hydrocarbons with one morph having (Z)-9-C25:1 and the other morph having (Z)-9-C27:1 as the major component. H. rutilans females were more similar to the morph having (Z)-9-C27:1 as the main component.

Conclusion

We conclude that H. rutilans females closely mimic the composition of cuticular compounds of their host species P. triangulum. The occurrence of isomeric forms of certain compounds on the cuticles of the cuckoo wasps but their absence on beewolf females suggests that cuckoo wasps synthesize the cuticular compounds rather than sequester them from their host. Thus, the behavioral data and the chemical analysis provide evidence that a specialized cuckoo wasp exhibits chemical mimicry of the odor of its host. This probably allows the cuckoo wasp to enter the nest with a reduced risk of being detected by olfaction and without leaving traitorous chemical traces.  相似文献   

11.
Chloroplast DNA phylogeography of the argan tree of Morocco   总被引:7,自引:0,他引:7  
Polymorphisms in the chloroplast genome of the argan tree (Sapotaceae), an endemic species of south-western Morocco, have been detected by restriction site studies of PCR-amplified fragments. A total of 12 chloroplast DNA (cpDNA) and two mitochondrial DNA (mtDNA) fragments were amplified and digested with a single restriction enzyme ( Hin fI). Polymorphisms were identified in six of the cpDNA fragments, whereas no mtDNA polymorphisms were detected in a survey of 95 individuals from 19 populations encompassing most of the natural range of the species. The cpDNA polymorphisms allowed the identification of 11 haplotypes. Two lineages, one in the south-east and the other in the north-west, divide the range of the argan tree into two distinct areas. The level of genetic differentiation measured at the haplotype level ( G STc= 0.60) (i.e. with unordered haplotypes) was smaller than when phylogenetic relationships were taken into account ( N STc= 0.71–0.74) (ordered haplotypes), indicating that population history must be considered in the study of the geographical distribution of cpDNA lineages in this species. If contrasted with the level of nuclear genetic differentiation measured in a previous study with isozymes ( G STn= 0.25), the results indicate a relatively high level of gene flow by seeds, or conversely a relatively low level of gene flow by pollen, as compared with other tree species. Goats and camels could have played an important role in disseminating the fruits of this tree.  相似文献   

12.
Trap-nesting bees and wasps (Hymenoptera Aculeata) colonizing crop and fallow fields in an agricultural landscape were studied using 20 sown fields (pea, barley, rye, clover-grass mixtures, Phacelia tanacetifolia) and 20 fields with naturally developed vegetation (1- and 2-year old fields, both mown and unmown, and old meadows). Fourteen species of Apoidea, 4 of Sphecidae, 1 of Eumenidae and 4 of parasitoids were reared from reed nests exposed in these 40 fields of 10 field-types. Fields with naturally developed vegetation had twice as many species as sown fields, due to the distribution pattern of the 14 bee species, whereas the 9 predatory species (wasps and parasitoids) showed a rather uniform distribution. None of the trap-nesting bees were found in Phacelia fields, despite contrasting expectations of beekeepers. Old meadows showed a particularly high abundance and species richness, since only 10% of all traps were exposed, but 32% of all bee nests were sampled in old meadows, including 4 bee species that were not found elsewhere. Accordingly, species richness of fields with naturally developed vegetation showed a significant increase with age. Variability in Hymenoptera species numbers could be explained by corresponding differences in plant species numbers. The alternative hypothesis that field size or field connectivity influenced species richness was not supported. Habitats with great floral diversity appeared to offer better and richer food resources for the flower-visiting bees, whereas food availability apparently did not influence predatory wasps. The bees Osmia caerulescens and Megachile versicolor that had colonized early-successional fields took twice as long to provision cells as those that colonized late-successional meadows characterized by a greater plant species richness. In contrast, the eumenid wasp Ancistrocerus gazella took a similar period of time to provision cells in both field types. In addition, bee and wasp species of plant-species-poor fields were on average significantly larger than those of plant-species-rich fields. Thus, body size appeared to be a good predictor of colonization ability. Management by cutting greatly increased plant species richness in early-successional set-aside fields and thus doubled species richness of bees. Cutting of early-successional habitats can be expected to benefit insects and plants in general, whereas older grassland should show the greatest insect diversity when both mown and unmown parts are present.  相似文献   

13.
The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as an example of co-evolution but little is known about the history of the interaction, and understanding the origin of functionally dioecious fig pollination has been especially difficult. The phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus were inferred from mitochondrial cytochrome oxidase gene sequences (mtDNA) and morphology. Separate and combined analyses indicated that the pollinators of functionally dioecious figs are not monophyletic. However, pollinator relationships were generally congruent with host phylogeny and support a revised classification of Ficus. Ancestral changes in pollinator ovipositor length also correlated with changes in fig breeding systems. In particular, the relative elongation of the ovipositor was associated with the repeated loss of functionally dioecious pollination. The concerted evolution of interacting morphologies may bias estimates of phylogeny based on female head characters, but homoplasy is not so strong in other morphological traits. The lesser phylogenetic utility of morphology than of mtDNA is not due to rampant convergence in morphology but rather to the greater number of potentially informative characters in DNA sequence data; patterns of nucleotide substitution also limit the utility of mtDNA findings. Nonetheless, inferring the ancestral associations of fig pollinators from the best-supported phylogeny provided strong evidence of host conservatism in this highly specialized mutualism.  相似文献   

14.
Su S  Cai F  Si A  Zhang S  Tautz J  Chen S 《PloS one》2008,3(6):e2365
The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct 'dialects' of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc), and the European bee Apis mellifera ligustica (Aml). Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language.  相似文献   

15.
The complete amino acid sequence of cytochrome c purified from the honeybee, Apis mellifera was determined. Only one molecular species of cytochrome c was found in the honeybee throughout its metamorphic stages. On the basis of a comparison of the amino acid sequence of honeybee cytochrome c with those of cytochromes c from other insects, it seems that the bee has evolutionarily appeared earlier than would be expected from the morphological and fossil evidence. If the classical phylogenetic relationships of the honeybee are correct, the evolutionary rate of cytochrome c must have been more rapid in the honeybee than in other insects.  相似文献   

16.
The pond loach Misgurnus dabryanus is a freshwater fish with a distribution range spanning the eastern part of the Asian continent, the Korean Peninsula, and Taiwan. The pond loach was transplanted to the Japanese archipelago through the co-inclusion with dojo loach (Misgurnus anguillicaudatus species complex) populations, which were imported live from China for food materials, and it is currently distributed widely across Japan. A previous mitochondrial DNA (mtDNA) analysis revealed that a pond loach population in Ehime Prefecture (Shikoku Island, Japan) included two highly diverged mtDNA groups (Groups I and II). To examine the origin of these two distinct forms of mtDNA within the Japanese pond loach population, we performed phylogenetic analyses using sequences based on the mtDNA of cytochrome oxidase b (cyt b) and the nuclear DNA recombination activating gene 1 (RAG-1). We also conducted a random amplified polymorphic DNA (RAPD) analysis to examine the establishment of reproductive isolation between sympatric pond loaches with two different mtDNA groups. Our mtDNA phylogenetic results indicated that the two diverged pond loach mtDNA sequences showed polyphyletic relationships among Misgurnus species and its related genus Cobitis. In contrast, there were no clear divergence in nuclear DNA among the pond loaches irrespective of their mtDNA groups, and they all formed monomorphic clades in the phylogenetic relationships among the species. The discrepancy between the mtDNA and nuclear DNA genes support that the existence of two diverged forms of DNA within the pond loach population could be attributed to past mtDNA introgressions from other species rather than convergent evolution. Previous mtDNA phylogenetic studies among Cobitidae revealed that the dojo loach also consisted of two genetically diverged polyphyletic clades: an original Misgurnus mtDNA and an introgressed mtDNA from Cobitis species. In our mtDNA result, the Group II haplotype of the pond loach was included in the mtDNA from the introgressed dojo loach. This suggested that the Group II haplotype was derived from introgressed dojo loach mtDNA. The close relationships between the introgressed dojo loach and the pond loach mtDNA indicated that this secondary introgression had recently occurred via hybridization in a recent artificial aquaculture or transportation process. Common RAG-1 alleles and RAPD bands were shared between the sympatric pond loaches with original and introgressed mtDNAs. This indicates that the introgressed mtDNA haplotype is included as one of the polymorphic genotypes within the pond loach populations, and does not represent existence of different cryptic species.  相似文献   

17.
 Mitochondrial (mt) DNA variation for six petaloid cytoplasmic male-sterile (CMS) and three fertile maintainer lines of carrot was assessed to establish genetic relationships. Total DNA was digested with restriction enzymes and probed with six homologous mtDNA cosmid probes. The six CMS accessions derived from wild carrot, four from Guelph, Ontario, one from Orleans, Massachusetts, and one from Madison, Wisconsin, were more closely related with each other (F=0.91) than with fertile maintainer lines derived from cultivated germplasm (F=0.62). The fertile maintainer lines were likewise found to be more similar to each other (F=0.78) than to the sterile lines. Three sterile lines, originating from wild carrot populations within 1 km of each other in Guelph, Ontario, were most closely related (F=0.96). The high degree of similarity among the six petaloid CMS lines which originated from individual wild carrot plants, some from geographically diverse regions, suggests that the cytoplasm responsible for this trait was imported to, or else evolved, only once in North America. Received: 1 December 1997 / Accepted: 12 December 1997  相似文献   

18.

Background

Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging.

Results

We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies).

Conclusions

An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1771-2) contains supplementary material, which is available to authorized users.  相似文献   

19.
Conservation of essential design features in coiled coil silks   总被引:1,自引:0,他引:1  
Silks are strong protein fibers produced by a broad array of spiders and insects. The vast majority of known silks are large, repetitive proteins assembled into extended beta-sheet structures. Honeybees, however, have found a radically different evolutionary solution to the need for a building material. The 4 fibrous proteins of honeybee silk are small ( approximately 30 kDa each) and nonrepetitive and adopt a coiled coil structure. We examined silks from the 3 superfamilies of the Aculeata (Hymenoptera: Apocrita) by infrared spectroscopy and found coiled coil structure in bees (Apoidea) and in ants (Vespoidea) but not in parasitic wasps of the Chrysidoidea. We subsequently identified and sequenced the silk genes of bumblebees, bulldog ants, and weaver ants and compared these with honeybee silk genes. Each species produced orthologues of the 4 small fibroin proteins identified in honeybee silk. Each fibroin contained a continuous predicted coiled coil region of around 210 residues, flanked by 23-160 residue length N- and C-termini. The cores of the coiled coils were unusually rich in alanine. There was extensive sequence divergence among the bee and ant silk genes (<50% similarity between the alignable regions of bee and ant sequences), consistent with constant and equivalent divergence since the bee/ant split (estimated to be 155 Myr). Despite a high background level of sequence diversity, we have identified conserved design elements that we propose are essential to the assembly and function of coiled coil silks.  相似文献   

20.
Allometric relationships among morphological traits underlie important patterns in ecology. These relationships are often phylogenetically shared; thus quantifying allometric relationships may allow for estimating difficult-to-measure traits across species. One such trait, proboscis length in bees, is assumed to be important in structuring bee communities and plant-pollinator networks. However, it is difficult to measure and thus rarely included in ecological analyses. We measured intertegular distance (as a measure of body size) and proboscis length (glossa and prementum, both individually and combined) of 786 individual bees of 100 species across 5 of the 7 extant bee families (Hymenoptera: Apoidea: Anthophila). Using linear models and model selection, we determined which parameters provided the best estimate of proboscis length. We then used coefficients to estimate the relationship between intertegular distance and proboscis length, while also considering family. Using allometric equations with an estimation for a scaling coefficient between intertegular distance and proboscis length and coefficients for each family, we explain 91% of the variance in species-level means for bee proboscis length among bee species. However, within species, individual-level intertegular distance was a poor predictor of individual proboscis length. To make our findings easy to use, we created an R package that allows estimation of proboscis length for individual bee species by inputting only family and intertegular distance. The R package also calculates foraging distance and body mass based on previously published equations. Thus by considering both taxonomy and intertegular distance we enable accurate estimation of an ecologically and evolutionarily important trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号