首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary A study of linkage between Becker muscular dystrophy and four X chromosome-specific DNA polymorphisms in 17 kindreds has indicated that this gene is located in Xp, as already anticipated by single pedigree analysis. In particular the DXS43 and DXS9 loci, identified by probes D2 and RC8, respectively, are closely linked to each other and are both located at approximately 15 cM from the Becker locus. These linkage data, together with the previously established linkage between Becker and the DXS7 locus identified by probe L 1.28, indicate that the Becker gene is located in the same region where Duchenne has been mapped and also yield information about relative genetic distances among different DNA polymorphisms of the X chromosome.  相似文献   

2.
Summary Lymphocyte karyotyping of an infant girl with the clinical features of microphthalmia, iridoschisis, goiter, hip joint dysplasia, labium synechia and craniotabes revealed an Xp deletion. The lymphocyte karyotypes of the parents were normal. Bromodeoxyuridine incorporation studies showed that, in 42 out of 43 metaphases, the deleted X chromosome was late replicating. In one metaphase, the normal X chromosome was observed to be allocyclic. Using DNA markers from the Xp22 region, the breakpoint was assigned distal to DXS16 (pXUT23) and proximal to DXS143 (dic56). Dosage intensity measurements confirmed that the STS gene and the DNA marker DXS31 were involved in the deleted area. Restriction fragment length polymorphism analysis revealed that the paternally derived X-chromosome was deleted.  相似文献   

3.
Summary We have localized a single-copy DNA probe, HU16 (locus DXS26), to Xq21.1. The probe was isolated from a human-mouse hybrid X;13 library and mapped with human-mouse hybrids containing different portions of the human X chromosome and DNA from male patients with different X-chromosomal deletions. The following order of loci is proposed: Xcen-(DXS72, DXS169)-(DXS232,DXS26)-DXS121-DXS233-DXS165 TCD-DXS95-DXYSl-Xqter. HU16 will be useful in the study of the putative genes that reside in Xq21 and whose defects lead to deafness and mental retardation.  相似文献   

4.
Summary Congenital stationary night blindness is characterized by disturbed or absent night vision that is always present at or shortly after birth and nonprogressive. The X-linked form of the disease (CSNBX; McKusick catalog no. 31050) differs from the autosomal types in that the former is frequently associated with myopia. X-chromosome-specific polymorphic DNA markers were used to carry out linkage analysis in three European families segregating for CSNBX. Close linkage without recombination was found between the disease locus and the anonymous locus DXS7, mapped to Xp11.3, assigning the mutation to the proximal short arm of the X chromosome. Linkage data obtained with markers flanking DXS7 provided further support for this localization of the gene locus. Thus, in addition to retinitis pigmentosa and Norrie disease, CSNBX represents the third well-known hereditary eye disease the locus of which is mapped on the proximal Xp and closely linked to DXS7.  相似文献   

5.
Dinucleotide CA repeat sequences in the human genome have been shown to be highly polymorphic due to variation in the length of the repeat-containing segment. Therefore, these markers can serve as anchor loci in the construction of a high-resolution genetic map of the human genome. In this study, we improved the efficiency of typing dinucleotide repeats using multiplex polymerase chain reaction (PCR). Dinucleotide repeat sequences of four previously identified markers (DXS453, DXS458, DXS454, and DXS424) on the long arm of the X chromosome were simultaneously amplified in a single PCR reaction. This multiplex PCR was applied to genotype individuals from the 40 CEPH reference families, and the genotypic data were used to determine the map position of the four loci with respect to eight reference markers in the Xq region by linkage analysis.  相似文献   

6.
We report a new polymorphic DNA marker (pJH89, DXS539) proximal to the fragile-X site. The pJH89 probe identifies a TaqI and a NcoI restriction fragment length polymorphism (combined heterozygosity of 42%) and is linked to the fragile-X locus with a maximal LOD score of 12 at 4 cM. Multipoint linkage analysis and physical mapping studies indicate that the pJH89 probe is located within the interval defined by the markers DXS369 and DXS548.  相似文献   

7.
A linkage study of Emery-Dreifuss muscular dystrophy   总被引:5,自引:0,他引:5  
Summary We have searched for linkage between polymorphic loci defined by DNA markers on the X chromosome and X-linked Emery-Dreifuss muscular dystrophy (EDMD). There are high recombination rates between EDMD and the Xp loci known to be linked to Becker and Duchenne muscular dystrophy. There is a suggestion of linkage between EDMD and the loci DXS52 and DXS15, defined by probes St 14 and DX13 respectively, located at Xq28. for DXS15=1.14 at =0.15. This is in agreement with the previously reported linkage between a disorder strongly resembling EDMD and colour-blindness (Thomas et al. 1972), suggesting that there is a second locus on the X chromosome concerned with muscle integrity.  相似文献   

8.
Summary Anderson Fabry disease is an X-linked lysosomal storage disorder caused by α-galactosidase A deficiency. Hemizygous males and some heterozygous females develop renal failure and cardiovacular complications in early adult life. We have investigated six large UK families to assess the possible linkage of five polymorphic DNA probes to the Anderson Fabry locus, previously localised to Xq21-24. No recombination was found between Anderson Fabry disease and DXS87, DXS88 and DXS17, which gave lodmax=6.4,6.4 and 5.8 respectively at θ=0.00, (upper confidence limit 0.10). DXS3 gave lodmax 2.9 at θ=0.10 (upper confidence limit 0.25). DXYS1 was excluded from linkage. The best fit map (DXYS1/DXS3) θ=0.192 (DXS17/DXS87/DXS88/Anderson Fabry locus) provided no information about the order of loci in parentheses due to the absence of recombinants. The close linkage of DXS17, DXS87 and DXS88, together with α-galactosidade A estimation, can be used for antenatal diagnosis and carrier detection until the application of a gene specific probe has been evaluated.  相似文献   

9.
Summary The gene involved in an X-linked form of cleft palate has been finely mapped using 14 restriction fragment length polymorphic (RFLP) markers that cover the long arm of the X chromosome. By the combination of deletion mapping and linkage analysis, the gene has been localized between the anonymous DNA markers DXYS12 on the proximal side, and DXS17 distally.  相似文献   

10.
Restriction-fragment-length-polymorphism analysis was used to examine a female who is segregating for Duchenne muscular dystrophy (DMD) and a deletion of the DXS164 region of the X chromosome. The segregating female has no prior family history of DMD, and she has two copies of the DXS164 region in her peripheral blood lymphocytes. The following two hypotheses are proposed to explain the coincidence of the DMD phenotype and deletion of the DXS164 region in her offspring: (1) she may be a gonadal mosaic for cells with two normal X chromosomes and cells with one normal X chromosome and an X chromosome with a deletion of the DXS164 region; and (2) she may carry a familial X;autosome translocation in which the DXS164 region is deleted from one X chromosome and translocated to an autosome. The segregation of DMD and the DXS164 deletion in this family illustrates the importance of extended pedigree analysis when DXS164 deletions are used to identify female carriers of the DMD gene.  相似文献   

11.
The locus DXS98, detected with the 1.5-kb anonymous probe p4D-8, was recently shown to be closely linked and proximal to the locus for the fragile X syndrome, with theta = .05 at lod = 3.406, by utilizing a limited number of meioses informative for a two-allele MspI RFLP. Because DXS98 may be the closest available marker to the fragile X locus (FRAXA), we sought to increase its utility for linkage studies by extending its PIC and confirming its localization to Xq27, proximal to FRAXA. We have isolated 15 kb of genomic DNA (lambda 4D8-3) from the DXS98 locus by using p4D-8 to screen a genomic phage library containing partial Sau3A-digested human DNA. Three additional RFLPs for the enzymes BglII and XmnI were found by using the entire lambda 4D8-3 as probe. Combined heterozygosity for the four RFLPs in 25 unrelated females was 48%, as compared with only 28% when the MspI RFLP alone was used. In situ hybridization of unique sequences from lambda 4D8-3 was performed on metaphase chromosomes of lymphocytes and lymphoblasts from patients with the fragile X syndrome. Grains on the X chromosome were significantly clustered at band Xq27. Following fragile site induction, all nine grains in the q27-28 region were proximal to the fragile site. Confirmation of the location of DXS98 proximal to FRAXA and the new RFLPs at this locus make DXS98 more useful for linkage analysis and physical mapping in the region of the fragile X mutation.  相似文献   

12.
Long-range physical mapping around the human steroid sulfatase locus   总被引:4,自引:0,他引:4  
M T Ross  A Ballabio  I W Craig 《Genomics》1990,6(3):528-539
The region of the human X chromosome containing the steroid sulfatase locus was analyzed by pulsed-field gel electrophoresis. Restriction site maps were generated for the X chromosome in the blood of a normal male individual and that in the mouse-human hybrid cell line ThyB-X; these maps extend over approximately 4.3 Mb of DNA of the former, and 3.2 Mb of the latter. Physical linkage was defined between the STS locus and sequences detected by the probes GMGX9 (DXS237), GMGXY19 (DYS74), CRI-S232 (DXS278), and dic56 (DXS143), and the order telomere--(STS, DYS74)--DXS237--DXS278--DXS143--centromere was deduced. The pulsed-field maps were used to demonstrate a deletion of 180 kb of DNA from the X chromosome of an individual with X-linked ichthyosis. Also, possible locations for the Kallmann syndrome gene were revealed, and the distance between the steroid sulfatase locus and the pseudoautosomal region was estimated to be at least 4 Mb.  相似文献   

13.
Summary Three families with androgen resistance syndromes — two with testicular feminization and one with Reifenstein syndrome — have been studied for linkage analysis. Using three cloned DNA sequences from the centromere region and the proximal long arm of the X chromosome (p8, pDP34, and S9, which define respectively the chromosomal segments DXS1, DXYS1, and DXS17), we found no recombination between the DXS1 locus and the mutant genes in the three families. Assuming that these disorders are the result of allelic mutations at the same locus for the androgen receptor, we can conclude that there is a close linkage between DXS1 and the androgen receptor locus, with a maximum lod score =3.5 at a recombination fraction =0.0 using the LIPED program (Ott 1974).  相似文献   

14.
We describe a novel polymorphic Alu insertion (DXS225) on the human X chromosome (Xq21.3) embedded into an L1 retrotransposon. The DXS225 polymorphism was genotyped in 684 males from the CEPH Human Genome Diversity Panel. This insertion was found in all regions of the globe, suggesting that it took place before modern humans spread from Africa ca. 100,000 years ago. However, only one Amerindian population (Karitiana) showed this insertion allele, which may have been introduced by European admixture. Thus, it appears likely that the Alu insertion was absent from pre-Columbian America. Analysis of molecular variance worldwide demonstrated that 92.2% of the genetic variance was concentrated within populations. DXS225 is flanked by two microsatellites (DXS8114 and DXS1002), which are 86 kb apart and are in very strong linkage disequilibrium. The combination of a unique event polymorphism on the X chromosome in linkage disequilibrium with two rapidly evolving microsatellites should provide a useful tool for studies of human evolution.  相似文献   

15.
We report the physical linkage of the gene encoding one of the subunits of the GABAA receptor (GABRA3) to the polymorphic locus DXS374 on the human X chromosome at Xq28. X-linked manic depression and other psychiatric disorders have been mapped to this region, and thus GABRA3 is a potential candidate gene for these disorders. DXS374--and therefore GABRA3--lies distal to the fragile X locus at a recombination fraction of approximately .15.  相似文献   

16.
A new polymorphic DNA marker U6.2, defining the locus DXS304, was recently isolated and mapped to the Xq27 region of the X chromosome. In the previous communication we describe a linkage study encompassing 16 fragile-X families and using U6.2 and five previously described polymorphic markers at Xq26-q28. One recombination event was observed between DXS304 and the fragile-X locus in 36 informative meioses. Combined with information from other reports, our results suggest the following order of the examined loci on Xq: cen-F9-DXS105-DXS98-FRAXA-DXS304-(DXS52-F8 -DXS15). The locus DXS304 is closely linked to FRAXA, giving a peak lod score of 5.86 at a corresponding recombination fraction of .00. On the basis of the present results, it is apparent that U6.2 is a useful probe for carrier and prenatal diagnosis in fragile-X families.  相似文献   

17.
Summary The polymorphic DNA marker DXS304 detected by probe U6.2 has recently been shown to be closer to the fragile X locus than previously available markers. Its usefulness has however been limited by its relatively low heterozygosity. We have isolated, by cosmid cloning, a 67 kilobase region around probe U6.2 and have characterized a new probe (U6.2-20E) that detects BanI and BstEII restriction fragment length polymorphisms (RFLPs). The BanI RFLP has a heterozygosity of 0.49 and is in partial linkage disequilibrium with the previously described polymorphism, with a combined heterozygosity of 0.63. Furthermore, we have found that the U6.2 original probe, which probably detects an insertion-deletion polymorphism, is also informative in BanI digests. Thus, the two informative RFLPs at the DXS304 locus can be conveniently tested in a single hybridization with a single digest. An updated linkage analysis confirms that DXS304 is distal to the fragile X locus. This informative locus can now be used effectively for genetic mapping of the Xq27–q28 region, and for diagnostic applications in fragile X or Hunter syndrome families.  相似文献   

18.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

19.
M Filippi  C Tribioli  D Toniolo 《Genomics》1990,7(3):453-457
Lambda G28, a mouse genomic clone homologous to the human P3 gene and associated with a CpG island, also hybridizes to human probes for the neighboring GdX gene. The two genes, P3 and GdX (DXS253E and DXS254E), physically linked on the human X chromosome, lie within a similar physical distance on the mouse X chromosome. The CpG island corresponds to that at the 5' of the human GdX gene. The relative orientation of the two genes is the same. The DNA sequence in coding and noncoding regions is very conserved.  相似文献   

20.
Choroideremia-locus maps between DXS3 and DXS11 on Xq   总被引:2,自引:0,他引:2  
Summary Choroideremia is a progressive tapetochoroidal dystrophy with X-linked transmission leading frequently to blindness in affected males. The choroideremia-locus (TCD) has recently been assigned to the long arm of the X chromosome by linkage to polymorphic DNA markers. In order to further define the location of the gene defect, two families segregating for choroideremia were examined for DNA restriction fragment length polymorphisms. A search was undertaken for linkage with cloned DNA probes from the proximal short and long arm as well as from the mid-portion of the long arm of the X chromosome. Our data suggest that the most plausible gene order on the Xq is: Xcen-DXYS1-DXS3-TCD-DXS11-Xqter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号