首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we tested the effects of long-term estrogen replacement treatment on myocardial ischemia-reperfusion injury and on the cardioprotection of ischemic preconditioning in isolated hearts from ovariectomized rats. Ovariectomized rats were treated with 17beta-estradiol (30 micro g/kg/d, s.c.) for 12 weeks. Isolated rat hearts were perfused in the Langendorff mode. Heart rate, coronary flow, left ventricular pressure and its first derivative (+/-LVdp/dtmax) were recorded. Fifteen-min global ischemia and 30-min reperfusion caused a significant decrease of cardiac mechanical function, which were not affected by ovariectomy or estrogen replacement treatment. The isolated hearts in all groups could be preconditioned, and the cardioprotection afforded by preconditioning in the sham-operated rats was greater compared with ovariectomized rats with or without estrogen treatment. These results suggest that long-term estrogen replacement treatment exerts no effect on the inhibition of mechanical function after ischemia-reperfusion, and this study also suggests that estrogen does not affect ischemic preconditioning in isolated hearts of ovariectomized rats.  相似文献   

2.
3.
We investigated the role of the 27-kDa heat shock protein (HSP27) in cardiac protection using Langendorff-perfused rat hearts. After preconditioning (a single episode of 5 min global ischemia followed by 5 min of reperfusion), HSP27 redistributed from the cytosol to the sarcomere and recovery of the contractile function, after 40 min of global ischemia and 50 min of reperfusion, was significantly enhanced. Both SB203580, a p38 MAP kinase inhibitor, and bisindolylmaleimide I, a protein kinase C inhibitor, prevented the effects of preconditioning. Both 2-chloro-N(6)-cyclopentyladenosine (adenosine A1 agonist) and anisomycin (activator of p38 MAP kinase and c-jun N-terminal kinase) mimicked preconditioning. These results suggest that activation of protein kinase C followed by activation of p38 MAP kinase elicits translocation of HSP27 to the sarcomere, a process which may be involved in the cardioprotective mechanism afforded by ischemic preconditioning in rat heart.  相似文献   

4.
During postischemic reperfusion, free radicals are produced and have deleterious effects in isolated rat hearts. We investigated whether melatonin (MEL) reduces the production of hydroxyl radical (*OH) in the effluent and aids in recovery of left ventricular (LV) function. Hearts were subjected to 30 min of ischemia followed by 30 min of reperfusion. Salicylic acid (SAL) was used as the probe for *OH, and its derivatives 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were quantified using HPLC. In addition, thiobarbituric acid reactive substances (TBARS) in the myocardium was measured. Plateaus in the measurement of 2,5- and 2,3-DHBA were seen from 3 to 8 min after reperfusion in each group. The group that received 100 microM MEL+ SAL had significantly reduced amounts of 2,5- and 2,3-DHBA by multiple folds, compared to the SAL group. TBARS was significantly decreased in the 100 microM MEL group (1.20+/-0.36 vs 1.85+/-0.10 micromol/g of drug-free group, p<0.001). More importantly, the 100 microM MEL group significantly recovered in LV function (LV developed pressure, +dp/dt, and -dp/dt; 63.0%, 60.3%, and 59.4% in the 100 microM MEL group; 30.2%, 29.7%, and 31.5% in the drug-free group, respectively; p<0.05). Duration of ventricular tachycardia or ventricular fibrillation significantly decreased in the 100 microM MEL group (100 microM MEL, 159+/-67 sec; drug-free, 1244+/-233 sec; p<0.05). As a result of scavenging *OH and reducing the extent of lipid peroxidation, MEL is an effective agent for protection against postischemic reperfusion injury.  相似文献   

5.
Endothelin stimulates degradation of phospholipids in isolated rat hearts.   总被引:2,自引:0,他引:2  
The abilities of endothelin-1 to cause cellular injury and to enhance the levels of inositol-1,4,5-triphosphate and the breakdown of [14C]arachidonate-labeled phospholipids have been examined in the isolated rat heart model. In 10 minutes, endothelin at 1 and 3 nM concentrations significantly increased the myocardial release of creatine kinase, suggesting endothelin-induced cell injury. The enhanced levels of myocardial inositol-1,4,5-triphosphate and diacyl glycerol by endothelin also suggest the increased breakdown of phosphatidylinositol-4,5-bisphosphate. In addition, endothelin also increased the degradation of other membrane phospholipids as observed by (1) a decrease in [14C]arachidonate radiolabel in phospholipids, (2) an increase in [14C]radiolabel in non-esterified fatty acids and triacyl glycerol, and (3) increased levels of non-esterified fatty acids. The potential role of endothelin-1 in myocardial ischemia-reperfusion injury is discussed.  相似文献   

6.
Summary The energy-linked processes (transmembrane potential and oxidative phosphorylation) resulted in impaired mitochondria isolated from ischemic perfused rat hearts. Addition of 1.5 mM L-propionyl-carnitine to the perfusate significantly reduced the ischemic damage and ameliorated mitochondrial Ca2+ homeostasis. In both normoxic and ischemic hearts perfused with L-propionyl-carnitine a consistent amount of propionyl-CoA —otherwise undetectable — was produced. L-propionyl-carnitine treatment also prevented the decrease of succinyl-CoA associated with the ischemic condition. These results and the decrease of myocardial acetyl-CoA induced by exogenous L-propionyl-carnitine points to the anaplerotic effect of this ester. The consequently improved flux in the tricarboxylic-acid cycle may account for the observed protection of mitochondrial functions afforded by L-propionyl-carnitine in the ischemic perfused hearts.Abbreviations DTE Dithioerythritol - DTT Dithiothreitol - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid  相似文献   

7.
The aim of the present study was to document the presence of cannabinoid receptors in the rat heart, and to assess the cardioprotective properties of CB(1)- and CB(2)-receptor agonists. Rat isolated hearts were exposed to low-flow ischemia and reperfusion, with selective cannabinoid agonists administered prior to and during the ischemic period. In some hearts, RT-PCR, Western blots, and immunohistological techniques were used to identify and localize both cannabinoid-receptor subtypes. The effect of cannabinoids on infarct size was evaluated in additional hearts using TTC staining. Protein and mRNA for both CB(1)- and CB(2)-receptors were found in rat heart extracts. CB(1)-receptors were localized almost exclusively on arterial and capillary endothelial cells in intact hearts, whereas CB(2)-receptors appeared on cardiomyocytes and endothelial cells of larger arteries. Both the CB(1)-agonist, ACEA (50 nM), and the CB(2)-agonist, JWH015 (50 nM), reduced infarct size. However, only the cardioprotective effect of the CB(1)-agonist was blocked by the NO-synthase inhibitor, N(G)-nitro-L-arginine (30 microM). In conclusion, CB(1)-receptors are present mainly on endothelial cells in the rat heart, and exert their effect through production of NO. In contrast, CB(2)-receptors present on cardiomyocytes exert a cardioprotective effect independent of this endothelial factor.  相似文献   

8.
Six hours after insulin treatment, hearts express heat shock protein 70 (Hsp70) and have improved contractile function after ischemia-reperfusion injury. In this study we examined hearts 1 h after insulin treatment for contractile function and for expression of Hsp70 and Hsp27. Adult, male Sprague-Dawley rats were assigned to groups: 1) sham, 2) control, 3) insulin injected (200 microU/g body wt), 4) heat shock treated (core body temperature, 42 degrees C for 15 min), and 5) heat shock and insulin treated. At 1 h after these treatments, hearts were isolated, equilibrated to Langendorff perfusion for 30 min, and then subjected for 30 min no-flow global ischemia (37 degrees C) followed by 2 h of reperfusion. Insulin-treated hearts had significantly increased contractile function compared with control hearts. At 1 h after insulin treatment, a minimal change in Hsp70 and Hsp27 content were detected. By 3 h after insulin treatment, a significant increase in Hsp70, but not Hsp27, was detected by Western blot analysis. By immunofluorescence, minimal Hsp70 was detected in insulin-treated hearts, whereas Hsp27 was detected in all hearts, indicative of its constitutive expression. Phosphospecific isoforms of Hsp27 were detected in insulin-, heat shock-, and heat shock and insulin-treated hearts. After ischemia and reperfusion, the insulin-treated hearts had significantly elevated levels of phosphorylated Hsp27. Inhibition of p38 MAPK with SB-203580 blocked the insulin-induced phosphorylation of Hsp27 and the improved functional recovery. In conclusion, insulin induces an apparent rapid phosphorylation of Hsp27 that is associated with improved functional recovery after ischemia-reperfusion injury.  相似文献   

9.
10.
11.
12.
The diazido derivative of ethidium bromide has been synthesized as a potential photoaffinity label and shown to be at least as effective as a mitochondrial mutagen as the parent compound, with a similar mode of action. Exposure of mitochondria of Saccharomyces cerevisiae to the compound, followed by ultraviolet-irradiation, which converts it to the highly reactive dinitrene, results in its specific binding to a single component which has been tentatively identified as the smallest polypeptide (subunit 9) of the membrane-bound ATPase. An analogus reaction is also obtained with the soluble, oligomycin-sensitive ATPase complex but not with the F1-ATPase itself. The reaction with the ATPase complex can also be monitored by fluorescence enhancement and by this attribute, as well as by other criteria, diazido-ethidium bromide, ethidium bromide itself, euflavine, N,N'-dicyclohexylcarbodiimide, 2,4-dinitrophenol, and 2-azido-4-nitrophenol all appear to compete for the same, lipophilic, binding site. A mitochondrial mutation (73/1) (see Flury, U., Feldman, F., and Mahler, H.R. (1974) J. Biol. Chem. 249, 6630-6637) produces a photoaffinity product with an altered electrophoretic mobility and molecular weight.  相似文献   

13.
14.
The role of histamine in cardiac physiology and pathophysiology is not clarified, but is dependent on species. The effects of exogenous histamine in Langendorff-perfused rat hearts were investigated. 1 mM, 100, 10, 1 and 0.1 M of histamine (n=7 each) as 15 min infusions were employed in a dose-response study, and compared to control perfused hearts (n=7). In another experimental series, 100 M histamine (n=15) was added during reperfusion after 25 min global ischemia, and compared to control ischemia-reperfusion (n=15). The maximal response to histamine in the dose-response study (100 M) was an increase of left ventricular developed pressure to 126±8% of initial value (mean±SEM, p<0.04), and increase of coronary flow to 152+6% (p<0.02) after 5 min infusion. 100 M histamine did not significantly influence heart rate or rhythm. The lowest concentration (0.1 M) did not have effects cardiac performance. Reperfusion with histamine for 2 min after ischemia reduced left ventricular developed pressure to 68±10% of initial value versus 116+17% in ischemic controls (p<0.05), and increased left ventricular end-diastolic pressure to 24±8 mmHg compared to 6±2 mmHg in controls (p<0.04). Left ventricular pressures were similar in hearts reperfused with histamine and in ischemic controls for the rest of the observation. Coronary flow increased during reperfusion in hearts given histamine. Histamine had a dose-dependent positive inotropic and vasodilatory effect in isolated rat hearts. Exogenous histamine had only minor effects on post-ischemic cardiac function.  相似文献   

15.
Maximum oxygen consumption was attained in isolated perfused rat hearts using high perfusate calcium and/or isoproterenol, or phenylephrine. The amplitude of calcium transients was directly related to oxygen consumption until oxygen consumed per beat reached maximum. At saturating oxygen consumption the amplitude of [Ca2+]i transients continued to increase, indicative of a calcium overload. In all cases +dP/dt correlated proportionately with +dCa2+/dt. Augmented developed pressure, related to isoproterenol-induced increase in cytosolic cAMP, cannot be attributed totally to elevated levels of [Ca2+]i transients. Adenosine (10(-5) M) added to the medium containing isoproterenol (10(-6) M) negated the isoproterenol-induced increase in cAMP and returned cardiac performance, oxygen consumption, and amplitude of [Ca2+]i transients to control state.  相似文献   

16.
The formation and properties of G-quadruplex structures from short single-strand oligonucleotide conjugates possessing two to four guanines and a 5'-terminal pyrenebutanol are reported. The 4-G conjugate forms a stable G-quadruplex under low or high potassium ion concentrations, whereas the 3-G conjugate forms a stable G-quadruplex only in the presence of high potassium. The 2-G conjugate fails to form a stable G-quadruplex even at low temperature and high potassium concentration. Both pyrene monomer and excimer fluorescence are observed for the G-quadruplex structures, whereas only monomer fluorescence is observed for the single-strand conjugates. Thus, pyrene excimer fluorescence can be used as a probe for the formation of G-quadruplex structures. The excimer/monomer intensity ratios for the G-quadruplex structures are dependent upon both the temperature and potassium or lithium salt concentration. The salt effect is attributed to a change in the structure of the hydrophobic pyrene chromophores, which are assembled on the 5'-face of the G-quadruplex as a consequence of electrostriction.  相似文献   

17.
Congestive heart failure (CHF) is one of the most common causes of death in western countries. The aim of this study was to establish and validate the working heart model in rat hearts with CHF. In the rat model the animals show parameters and symptoms that can be extrapolated to the clinical situation of patients with end-stage heart failure. The focus of attention was the evaluation of cardiodynamics (e.g.contractility) in the isolated 'working heart' model. The geometric properties of the left ventricle were measured by planimetry (stereology). Formulae available in the past for determining certain parameters in the working heart model (e.g.external heart work) have to be fitted to the circumstances of the infarcted rat hearts with its different organ properties.CHF was induced in Wistar Kyoto (WKY/NHsd) and spontaneously hypertensive rats (SHR/NHsd) by creating a permanent (8 week) occlusion of the left coronary artery, 2 mm distal to the origin from the aorta, by a modified technique (Itter et al. 2004). This resulted in a large infarction of the free left ventricular wall.We were able to establish and adapt a new and predictive working heart model in spontaneously hypertensive rat hearts with myocardial infarction (MI) 8-12 weeks after coronary artery ligation. At this stage the WKY rat did not show any symptoms of CHF. The SHR rat represented characteristic parameters and symptoms that could be extrapolated to the clinical situation of patients with end-stage heart failure (NYHA III-IV). Upon inspection, severe clinical symptoms of CHF such as dyspnoea, subcutaneous oedema, palebluish limbs and impaired motion were prominent. On necropsy the SHR showed lung oedema, hydrothorax, large dilated left and right ventricular chambers and hypertrophy of the septum. In the working heart model the infarcted animals showed reduced heart power, diminished contractility and enhanced heart work, much more so in the SHR/NHsd than in the Wistar Kyoto rat (WKY/NHsd).The aim for the future is to find a causal therapy of heart failure treatment. At present, only palliative therapy is possible for patients with heart failure. For this reason the working heart model in CHF rat hearts should provide a valuable method for early testing of new therapeutic approaches for patients with CHF.  相似文献   

18.
The objectives of this study were to determine 1) whether reactive oxygen species generated upon postischemic reperfusion lead to oxidative stress in rat hearts, and 2) whether an exogenous prooxidant present in the early phase of reperfusion causes additional injury. Isolated buffer-perfused rat hearts were subjected to 30 min of hypothermic no-flow ischemia followed by 30 min of reperfusion. Increased myocardial content of glutathione disulfide (GSSG) and increased active transport of GSSG were used as indices of oxidative stress. To impose a prooxidant load, cumene hydroperoxide (20 M) was administered during the first 10 min of reperfusion to a separate group of postischemic hearts. Reperfusion after 30 min of hypothermic ischemia resulted in a recovery of myocardial ATP from 28% at end-ischemia to 50–60%, a release of 5% of total myocardial LDH, and an almost complete recovery of both coronary flow rate and left ventricular developed pressure. After 5 and 30 min of reperfusion, neither myocardial content of GSSG nor active transport of GSSG were increased. These indices were increased, however, if cumene hydroperoxide was administered during early reperfusion. After stopping the administration of cumene hydroperoxide, myocardial GSSG content returned to control values and GSH content increased, indicating an unimpaired glutathione reductase reaction. Despite the induction of oxidative stress, reperfusion with cumene hydroperoxide did not cause additional metabolic, structural, or functional injury when compared to reperfusion without cumene hydroperoxide. We conclude that reactive oxygen species generated upon postischemic reperfusion did not lead to oxidative stress in isolated rat hearts. Moreover, even a superimposed prooxidant load during early reperfusion did not cause additional injury.  相似文献   

19.
Induction of cardiac work increased protein synthesis in hearts supplied glucose or a mixture simulating normal plasma levels of glucose, insulin, glucagon, lactate, and beta-hydroxybutyrate. During 2 h of perfusion, cardiac work did not accelerate protein synthesis in hearts supplied a mixture of glucose, lactate, and higher concentrations of insulin. Protein degradation was decreased by work in hearts supplied glucose. Nitrogen balance was negative in Langendorff-perfused hearts provided glucose, but was less so in working preparations. Nitrogen balance was zero or positive in working hearts provided the mixture simulating plasma or the mixture of glucose, lactate, and insulin. In Langendorff preparations, increased aortic pressure accelerated protein synthesis during the second hour of perfusion in hearts supplied glucose, glucose plus insulin, or pyruvate. When ventricular pressure development was prevented by ventricular draining or when drained hearts were arrested with tetrodotoxin, protein synthesis still increased as perfusion pressure was raised from 60 to 120 mm Hg. Oxygen consumption increased as aortic pressure was increased in drained, beating hearts, but was unaffected in arrested, drained hearts. These studies indicated that increased aortic pressure and its attendant stretch of the ventricular wall were the mechanical parameter most closely associated with faster rates of protein synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号