首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian sex differentiation involves the action of a cascade of genes. Discovery of the sex-determining region of the Y chromosome (SRY) marked the beginning of the delineation of the genes in the cascade. Studies of the genetics of mammalian sex reversal and the embryogenesis of the mice are essential in this endeavor. A number of genes involved in the pathway have been identified and all except one of these genes have a putative role in male sex differentiation. Besides SRY being the master switch in male sex differentiation the hierarchical relationship of the genes identified are far from being understood. Similarly, our knowledge of the genetic regulation of female sex differentiation is minimal. Differential screening and gene expression profiling bring a new dimension to the pursuit with the identification of a number of genes previously unknown to be involved in sex differentiation. Wider application of functional genomic techniques and introduction of proteomic analyses are expected to shed light to our understanding of this complicated developmental process.  相似文献   

2.
3.
Current research into the molecular biology of blood-clotting factors suggests that the basis of inherited bleeding disorders may soon be understood. In addition, the expression of cloned genes for the factors in mammalian cell lines provides the hope of pure factors being available for replacement therapy, uncontaminated with the causative agents for Hepatitis and Acquired Immune Deficiency Syndrome (AIDS), identified in the blood products at present available. The recent findings on the molecular biology of several of the key blood clotting genes are described here.  相似文献   

4.
《BMJ (Clinical research ed.)》1965,2(5476):1446-1447
  相似文献   

5.
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.  相似文献   

6.
Molecular biology of thermoregulation.   总被引:1,自引:0,他引:1  
  相似文献   

7.
Molecular biology of archaebacteria.   总被引:8,自引:11,他引:8  
  相似文献   

8.
Comparative genomic hybridization (CGH) was used to identify and probe sex chromosomes in several XY and WZ systems. Chromosomes were hybridized simultaneously with FluorX-labelled DNA of females and Cy3-labelled DNA of males in the presence of an excess of Cot-1 DNA or unlabelled DNA of the homogametic sex. CGH visualized the molecular differentiation of the X and Y in the house mouse, Mus musculus, and in Drosophila melanogaster: while autosomes were stained equally by both probes, the X and Y chromosomes were stained preferentially by the female-derived or the male-derived probe, respectively. There was no differential staining of the X and Y chromosomes in the fly Megaselia scalaris, indicating an early stage of sex chromosome differentiation in this species. In the human and the house mouse, labelled DNA of males in the presence of unlabelled DNA of females was sufficient to highlight Y chromosomes in mitosis and interphase. In WZ sex chromosome systems, the silkworm Bombyx mori, the flour moth Ephestia kuehniella, and the wax moth Galleria mellonella, the W chromosomes were identified by CGH in mitosis and meiosis. They were conspicuously stained by both female- and male-derived probes, unlike the Z chromosomes, which were preferentially stained by the male-derived probe in E. kuehniella only but were otherwise inconspicuous. The ratio of female:male staining and the pattern of staining along the W chromosomes was species specific. CGH shows that W chromosomes in these species are molecularly well differentiated from the Z chromosomes. The conspicuous binding of the male-derived probe to the W chromosomes is presumably due to an accumulation of common interspersed repetitive sequences. Received: 6 January 1999; in revised form: 28 January 1999 / Accepted: 11 February 1999  相似文献   

9.
10.
11.
Molecular biology of spider silk.   总被引:9,自引:0,他引:9  
Spider silks are an intriguing family of fibrous proteins due to their highly repetitive primary sequence, their solution properties and their assembly and processing into fibers with remarkable mechanical properties. Current research efforts aimed at understanding and manipulating genes encoding these proteins are helping to gain insight into the relationships between protein sequence, protein assembly and macromolecular properties.  相似文献   

12.
Molecular biology of tissue kallikrein.   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

13.
14.
Molecular biology of bacterial bioluminescence.   总被引:63,自引:2,他引:63       下载免费PDF全文
The cloning and expression of the lux genes from different luminescent bacteria including marine and terrestrial species have led to significant advances in our knowledge of the molecular biology of bacterial bioluminescence. All lux operons have a common gene organization of luxCDAB(F)E, with luxAB coding for luciferase and luxCDE coding for the fatty acid reductase complex responsible for synthesizing fatty aldehydes for the luminescence reaction, whereas significant differences exist in their sequences and properties as well as in the presence of other lux genes (I, R, F, G, and H). Recognition of the regulatory genes as well as diffusible metabolites that control the growth-dependent induction of luminescence (autoinducers) in some species has advanced our understanding of this unique regulatory mechanism in which the autoinducers appear to serve as sensors of the chemical or nutritional environment. The lux genes have now been transferred into a variety of different organisms to generate new luminescent species. Naturally dark bacteria containing the luxCDABE and luxAB genes, respectively, are luminescent or emit light on addition of aldehyde. Fusion of the luxAB genes has also allowed the expression of luciferase under a single promoter in eukaryotic systems. The ability to express the lux genes in a variety of prokaryotic and eukaryotic organisms and the ease and sensitivity of the luminescence assay demonstrate the considerable potential of the widespread application of the lux genes as reporters of gene expression and metabolic function.  相似文献   

15.
The occurrence of new variant Creutzfeldt-Jakob disease and the experimental confirmation that it is caused by the same prion strain as BSE has dramatically highlighted the need for a precise understanding of the molecular basis of prion propagation. The molecular basis of prion-strain diversity, previously a major challenge to the protein-only model, is now becoming clearer. The conformational change thought to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta-structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. These and other advances in the fundamental biology of prion propagation are leading to prion diseases becoming arguably the best understood of the neurodegenerative conditions and strategies for the development of rational therapeutics are becoming clearer.  相似文献   

16.
Molecular biology of microbial ureases.   总被引:25,自引:0,他引:25       下载免费PDF全文
Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.  相似文献   

17.
The genetics and biology of vertebrate sex determination.   总被引:2,自引:0,他引:2  
P Koopman 《Cell》2001,105(7):843-847
  相似文献   

18.
Molecular biology of trypanosome antigenic variation.   总被引:27,自引:0,他引:27       下载免费PDF全文
  相似文献   

19.
Molecular biology of the alternative oxidase.   总被引:32,自引:6,他引:26       下载免费PDF全文
L McIntosh 《Plant physiology》1994,105(3):781-786
  相似文献   

20.
In 1861, Charles Darwin wrote "We do not even in the least know the final cause of sexuality; why new beings should be produced by the union of the two sexual elements, instead of by a process of parthenogenesis". It was hardly possible to begin to answer this question at that time, in view of the contemporary lack of knowledge of genetics and cell biology. Since then, research into the cellular basis of reproduction has shown that sexual reproduction is the norm for the majority of eukaryotes, with huge consequences for their biology. The evolution of sex and some of its consequences are the subject of the series of reviews, and a Primer, in this special issue of Current Biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号