首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method employing filter arrays of a cDNA expression library for the identification of substrates for protein kinases was developed. With this technique, we identified a new member of the cyclin family, cyclin L2, as a substrate of the nuclear protein kinase DYRK1A. Cyclin L2 contains an N-terminal cyclin domain and a C-terminal arginine/serine-rich domain (RS domain), which is a hallmark of many proteins involved in pre-mRNA processing. The gene for cyclin L2 encodes the full-length cyclin L2, which is predominantly expressed in testis, as well as a truncated splicing variant (cyclin L2S) that lacks the RS domain and is ubiquitously expressed in human tissues. Full-length cyclin L2, but not cyclin L2S, was associated with the cyclin-dependent kinase PITSLRE. Cyclin L2 interacted with splicing factor 2 in vitro and was co-localized with the splicing factor SC35 in the nuclear speckle compartment. Photobleaching experiments showed that a fusion protein of green fluorescent protein and cyclin L2 in nuclear speckles rapidly exchanged with unbleached molecules in the nucleus, similar to other RS domain-containing proteins. In striking contrast, the closely related green fluorescent protein-cyclin L1 was immobile in the speckle compartment. DYRK1A interacted with cyclin L2 in pull-down assays, and overexpression of DYRK1A stimulated phosphorylation of cyclin L2 in COS-7 cells. These data characterize cyclin L2 as a highly mobile component of nuclear speckles and suggest that DYRK1A may regulate splicing by phosphorylation of cyclin L2.  相似文献   

2.
The cDNA clone encoding a novel isoform of protein kinase PKN, termed PKNbeta, was isolated from a HeLa cDNA library. PKNbeta had high sequence homology with PKNalpha, originally isolated PKN, especially in the repeats of charged amino acid-rich region with leucine-zipper like sequences (CZ region/HR1), in the carboxyl-terminal catalytic domain, and in approximately 130 amino acid stretch (D region/HR2), located between CZ region/HR1 and the catalytic domain. However, the amino acid sequence of PKNbeta differed from that of PKNalpha in the region immediately amino-terminal to the catalytic domain, which contained two distinct proline-rich sequences consistent with the class II consensus sequence, PXXPXR, for binding to SH3 domain. Distribution of PKNbeta differed from that of PKNalpha in the following two respects: (1) Northern blotting indicated that PKNbeta mRNA could not be detected in human adult tissues, but was expressed abundantly in human cancer cell lines; (2) immunochemical analysis indicated that PKNbeta localized in nucleus and perinuclear Golgi apparatus, and was almost absent in cytoplasmic region in NIH3T3 cells. Recombinant PKNbeta expressed in COS7 cells displayed autophosphorylation and peptide kinase activity, but was found to be significantly less responsive to arachidonic acid than PKNalpha. The identification of this novel isoform underscores the diversity of PKN signaling pathway.  相似文献   

3.
4.
Human PTEFb is a protein kinase composed by CDK9 and Cyclin T that controls the elongation phase of RNA Pol II. This complex also affects the activation and differentiation program of lymphoid cells. In this study we found that several head and neck tumor cell lines overexpress PTEFb. We also established that Cyclin T1 is able to induce transformation in vitro, as we determined by foci and colony formation assays. Nu/nu mice s.c. injected with stable transfected Cyclin T1 cells (NIH 3T3 Cyclin T1) developed tumors faster than animals injected with control cells (NIH 3T3 β-gal). In vitro, NIH 3T3 Cyclin T1 cells show increased proliferation and CDK4-Rb phosphorylation. Even more, silencing E2F1 expression (shRNA E2F1) in NIH 3T3 cells resulted in a dramatic inhibition of Cyclin T1-induced foci. All these data demonstrate for the first time the Cyclin T1 oncogenic function and suggest a role for this protein in controlling cell cycle probably via Rb/E2F1 pathway.Key words: cyclin T1, CDK9, PTEFb  相似文献   

5.
PKNalpha is a fatty acid- and Rho-activated serine/threonine protein kinase having a catalytic domain homologous to members of the protein kinase C family. Recently it was reported that PKNalpha is involved in the p38 mitogen-activated protein kinase (MAPK) signaling pathway. To date, however, how PKNalpha regulates the p38gamma MAPK signaling pathway is unclear. Here we demonstrate that PKNalpha efficiently phosphorylates MLTKalpha (MLK-like mitogen-activated protein triple kinase), which was recently identified as a MAPK kinase kinase (MAPKKK) for the p38 MAPK cascade. Phosphorylation of MLTKalpha by PKNalpha enhances its kinase activity in vitro. Expression of the kinase-negative mutant of PKNalpha inhibited the mobility shift of MLTKalpha caused by osmotic shock in SDS-PAGE. Furthermore, PKNalpha associates with each member of the p38gamma MAPK signaling pathway (p38gamma, MKK6, and MLTKalpha). These results suggest that PKNalpha functions as not only an upstream activator of MLTKalpha but also a putative scaffold protein for the p38gamma MAPK signaling pathway.  相似文献   

6.
7.
Expression of cyclin, a non-histone nuclear protein, during recombinant interleukin 2 (rIL2)-driven cell-cycle progression of cloned T lymphocytes has been assessed. We found that expression of cyclin protein, as detected by immunofluorescence, is tightly associated with proliferation, and not merely S-phase, of L2 cells stimulated with rIL2. Cyclin immunofluorescence was detected in all cell-cycle phases (G1/S/G2/M, as detected by flow cytometry) of proliferating L2 cells. Accumulation of cyclin mRNA levels was induced as early as 1 h after stimulation, was maximal at 25-49 h, and remained elevated throughout stimulation, as detected by Northern blot analysis. A cDNA-encoding murine cyclin was cloned from a cDNA library prepared from IL2-stimulated cloned T cells. The sequence of the 5' end of the murine cyclin cDNA was determined and found to be 88% and 82% similar to the sequences of cDNA clones encoding rat and human cyclin, respectively. The present studies demonstrate that cyclin protein and mRNA accumulation are highly regulated during IL2-induced proliferation of a cloned T cell. These data provide a framework for addressing the molecular mechanisms regulating cyclin gene expression during cellular proliferation.  相似文献   

8.
9.
Lamin A/C is a major component of the nuclear lamina. An intact nuclear lamina has been proposed to be necessary for muscle differentiation. Cyclin D3 is known to be upregulated in differentiated muscle cells and to form insoluble complexes with cell-cycle regulatory factors in these cells. We have examined the possibility of direct binding interactions between lamin A/C and cyclin D3 by in vitro binding assays and co-immunoprecipitation studies with muscle cells. Our results indicate that cyclin D3 binds specifically to amino acid residues 383-474 of lamin A/C and associates with lamin A/C in muscle cells. The identification of cyclin D3 as a novel binding partner of lamin A/C has important implications for a role for lamin A/C in muscle differentiation.  相似文献   

10.
11.
12.
A new human cyclin, named cyclin E, was isolated by complementation of a triple cln deletion in S. cerevisiae. Cyclin E showed genetic interactions with the CDC28 gene, suggesting that it functioned at START by interacting with the CDC28 protein. Two human genes were identified that could interact with cyclin E to perform START in yeast containing a cdc28 mutation. One was CDC2-HS, and the second was the human homolog of Xenopus CDK2. Cyclin E produced in E. coli bound and activated the CDC2 protein in extracts from human G1 cells, and antibodies against cyclin E immunoprecipitated a histone H1 kinase from HeLa cells. The interactions between cyclin E and CDC2, or CDK2, may be important at the G1 to S transition in human cells.  相似文献   

13.
14.
Stimulation of primary human T lymphocytes results in up-regulation of cyclin T1 expression, which correlates with phosphorylation of the C-terminal domain of RNA polymerase II (RNAP II). Up-regulation of cyclin T1 and concomitant stabilization of cyclin-dependent kinase 9 (CDK9) may facilitate productive replication of HIV in activated T cells. We report that treatment of PBLs with two mitogens, PHA and PMA, results in accumulation of cyclin T1 via distinct mechanisms. PHA induces accumulation of cyclin T1 mRNA and protein, which results from cyclin T1 mRNA stabilization, without significant change in cyclin T1 promoter activity. Cyclin T1 mRNA stabilization requires the activation of both calcineurin and JNK because inhibition of either precludes cyclin T1 accumulation. In contrast, PMA induces cyclin T1 protein up-regulation by stabilizing cyclin T1 protein, apparently independently of the proteasome and without accumulation of cyclin T1 mRNA. This process is dependent on Ca2+-independent protein kinase C activity but does not require ERK1/2 activation. We also found that PHA and anti-CD3 Abs induce the expression of both the cyclin/CDK complexes involved in RNAP II C-terminal domain phosphorylation and the G1-S cyclins controlling cell cycle progression. In contrast, PMA alone is a poor inducer of the expression of G1-S cyclins but often as potent as PHA in inducing RNAP II cyclin/CDK complexes. These findings suggest coordination in the expression and activation of RNAP II kinases by pathways that independently stimulate gene expression but are insufficient to induce S phase entry in primary T cells.  相似文献   

15.
The CDK2-associated cyclin A1 is essential for spermatogenesis and contributes to leukemogenesis. The detailed molecular functions of cyclin A1 remain unclear, since the molecular networks involving cyclin A1-CDK2 have not been elucidated. Here, we identified novel cyclin A1/CDK2 interaction partners in a yeast triple-hybrid approach. Several novel proteins (INCA1, KARCA1, and PROCA1) as well as the known proteins GPS2 (G-protein pathway suppressor 2), Ku70, receptor for activated protein kinase C1/guanine nucleotide-binding protein beta-2-like-1, and mRNA-binding motif protein 4 were identified as interaction partners. These proteins link the cyclin A1-CDK2 complex to diverse cellular processes such as DNA repair, signaling, and splicing. Interactions were confirmed by GST pull-down assays and co-immunoprecipitation. We cloned and characterized the most frequently isolated unknown gene, which we named INCA1 (inhibitor of CDK interacting with cyclin A1). The nuclear INCA1 protein is evolutionarily conserved and lacks homology to any known gene. This novel protein and two other interacting partners served as substrates for the cyclin A1-CDK2 kinase complex. Cyclin A1 and all interaction partners were highly expressed in testis with varying degrees of tissue specificity. The highest expression levels were observed at different time points during testis maturation, whereas expression levels in germ cell cancers and infertile testes decreased. Taken together, we identified testicular interaction partners of the cyclin A1-CDK2 complex and studied their expression pattern in normal organs, testis development, and testicular malignancies. Thereby, we establish a new basis for future functional analyses of cyclin A1. We provide evidence that the cyclin A1-CDK2 complex plays a role in several signaling pathways important for cell cycle control and meiosis.  相似文献   

16.
A number of cyclins have been described, most of which act together with their catalytic partners, the cyclin-dependent kinases (Cdks), to regulate events in the eukaryotic cell cycle. Cyclin C was originally identified by a genetic screen for human and Drosophila cDNAs that complement a triple knock-out of the CLN genes in Saccharomyces cerevisiae. Unlike other cyclins identified in this complementation screen, there has been no evidence that cyclin C has a cell-cycle role in the cognate organism. Here we report that cyclin C is a nuclear protein present in a multiprotein complex. It interacts both in vitro and in vivo with Cdk8, a novel protein-kinase of the Cdk family, structurally related to the yeast Srb10 kinase. We also show that Cdk8 can interact in vivo with the large subunit of RNA polymerase II and that a kinase activity that phosphorylates the RNA polymerase II large subunit is present in Cdk8 immunoprecipitates. Based on these observations and sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, we suggest that cyclin C and Cdk8 control RNA polymerase II function.  相似文献   

17.
Cyclin E-Cdk2 is an evolutionary conserved cyclin-dependent kinase (CDK) complex that drives the G1 to S phase transition of the cell cycle. A novel cDNA encoding a HECT family protein also containing RCC1-like repeats was isolated by a yeast two-hybrid screening using both cyclin E and its inhibitor p21. The protein product of this cDNA, Ceb1, interacts with various cyclin subunits of CDKs in mammalian cells. Expression of Ceb1 is specifically detected in testis and ovary and is highly elevated when the functions of the tumor suppressor proteins, p53 and RB, are compromised by mutations or viral oncoproteins. The present results suggest that Ceb1 may play a critical role when its expression and the CDK activity are upregulated by inactivation of p53 and RB.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号