首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 microg/kg dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[a]pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 microg PAH/kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.  相似文献   

2.
Mangrove sediment had high natural attenuation potential with more than 50% of total PAHs being removed within 15 days. The efficiency in degrading PAHs varied with the declining order of phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr). The Most Probable Number (MPN) of PAH-degrading bacteria in the PAH-contaminated slurries was 2 to 4 orders of magnitude higher than that in the non-contaminated mangrove slurries. The biodegradation ability of the indigenous microbial community in mangrove sediment slurry was significantly increased after exposure to polycyclic aromatic hydrocarbons. Such enhancement effect was dependent on the level and time of exposure, as well as the types of PAH compounds. The lowest contamination level of 3 mg kg?1 was effective in promoting the degradation of Phe and Fla after seven days, but the enhancement effect for Pyr degradation was only found in the slurries exposed to contamination levels of 9 mg kg?1 for 30 days, suggesting a threshold concentration of PAHs to stimulate growth and activity of pyrene-degrading bacteria. The contamination level higher than the threshold concentration did not lead to more degradation. The present study provides insights into the natural attenuation of PAH-contaminated mangrove sediments.  相似文献   

3.
Peanut oil amendment (0.1%-0.2% (v/v)) increased the biodegradation of various polycyclic aromatic hydrocarbons (PAHs) by 15%-80% with a mixed bacterial culture and a pure culture of Comamonas testosteroni in aqueous media and in PAH-contaminated weathered soil slurry systems. The stimulatory effect on biodegradation was more pronounced with the high molecular weight PAHs (e.g., >3 rings). The presence of peanut oil also accelerated the biodegradation of PAHs sorbed onto activated carbon, indicating its potential application in the bioregeneration of activated carbon.  相似文献   

4.
Treatment of dredged sediments contaminated by polyaromatic hydrocarbons (PAHs) is a significant problem in the New York/New Jersey (NY/NJ) Harbor. 0.5 m3-scale slurry-phase bioreactors were used to determine whether bioaugmentation with a PAH-degradative bacterial consortium, or with the salt marsh grass S. alterniflora, could enhance the biodegradation of PAHs added to dredged estuarine sediments from the NY/NJ Harbor. The results were compared to biodegradation effected by the indigenous sediment microbial community. Sediments were diluted 1:1 in tap water and spiked to a final concentration of 20 mg/kg dry weight sediment of phenanthrene, anthracene, acenaphthene, fluorene, fluoranthene, and pyrene. The sediment slurry was then continuously sparged with air over 3 months. In all bioreactors a rapid reduction of greater than 95% of the initial phenanthrene, acenaphthene, and fluorene occurred within 14 days. Pyrene and fluoranthene reductions of 70 to 90% were achieved by day 77 of treatment. Anthracene was more recalcitrant and reductions ranged from 30 to 85%. Separate experiments showed that the sediment microbial communities mineralized 14C-pyrene and 14C-phenanthrene. PAH degradation, and the number of phenanthrene-degrading bacteria, were not enhanced by microbial or plant bioaugmentation. These data demonstrate that bioaugmentation is not required to effect efficient remediation of PAH-contaminated dredged sediments in slurry-phase bioreactors.  相似文献   

5.
Microbial biodegradation of polyaromatic hydrocarbons   总被引:3,自引:0,他引:3  
Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) are known to be toxic to living organisms and have been identified as carcinogenic. In this study, a pathway of surfactant flushing, chemical oxidation, and biological treatment is proposed to remediate the soils polluted with the hydrophobic PAHs. Different surfactants such as Tween 80, Brij 35, sodium dodecyl sulfate (SDS), and polyethylene glycol (PEG) 6000 were tested in order to increase the PAH solubilization from the soil matrix. The maximum desorption efficiency of naphthalene and anthracene were found to be 56.5% and 59%, respectively, when Brij and SDS were used. The soluble PAH in the aqueous phase was amended with sodium thiosulfate (3%) to oxidize the PAH into a more bioavailable form. The chemical oxidation with subsequent biodegradation by Pseudomonas aeruginosa exhibited the relatively high PAH degradation rate (1.24 times higher) when compared with chemical oxidation alone. These results display the efficiency of chemical pretreatment of PAH-contaminated soil for improved bioremediation.  相似文献   

7.
Bacteria-mediated PAH degradation in soil and sediment   总被引:3,自引:0,他引:3  
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the natural environment and easily accumulate in soil and sediment due to their low solubility and high hydrophobicity, rendering them less available for biological degradation. However, microbial degradation is a promising mechanism which is responsible for the ecological recovery of PAH-contaminated soil and sediment for removing these recalcitrant compounds compared with chemical degradation of PAHs. The goal of this review is to provide an outline of the current knowledge of biodegradation of PAHs in related aspects. Over 102 publications related to PAH biodegradation in soil and sediment are compiled, discussed, and analyzed. This review aims to discuss PAH degradation under various redox potential conditions, the factors affecting the biodegradation rates, degrading bacteria, the relevant genes in molecular monitoring methods, and some recent-year bioremediation field studies. The comprehensive understanding of the bioremediation kinetics and molecular means will be helpful for optimizing and monitoring the process, and overcoming its limitations in practical projects.  相似文献   

8.
Natural attenuation of PAH in sediments is usually slow due to prevailing anaerobic conditions in sediments. Electrochemical stimulation of PAH biodegradation is proposed and demonstrated for remediation of contaminated sediment. Two graphite electrodes were placed horizontally at different depths in PAH-spiked sediments; the cathode was near the water-sediment interface and the anode was laid in the deeper sediment. An external power of 2 V was continuously applied to the electrodes to stimulate PAH biodegradation. Redox potential around the anode in powered reactors increased gradually, and was 50–150 mV higher than that in the control. pH around the anode decreased to ~6 from an initial value of 6.4 or 6.7 in powered reactors, which reflected water electrolysis. Phenanthrene concentration at the anode decreased with time, showing a unique Z-shaped profile in the sediment in powered reactors. PAH degrading genes around the anode in powered reactor were found to increase compared to the control reactor, which provided microbial evidence of biodegradation. These findings demonstrated the capability of this novel bioelectrochemical technology for the remediation of PAH-contaminated sediment.  相似文献   

9.
红树林(mangrove)是海陆交汇带重要的湿地生态系统,也是环境污染物蓄积与转化的热区.多环芳烃(polycyclic aromatic hydrocarbons,PAHs)因其环境蓄积特点在红树林生境中广泛分布,威胁生态系统健康,其降解转化是近年的研究重点.本文聚焦红树林湿地多环芳烃的微生物降解研究现状,从红树林生...  相似文献   

10.
The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.  相似文献   

11.
Zhang S  Wang Q  Xie S 《Biodegradation》2012,23(2):221-230
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in groundwater. The remediation of PAH-contaminated groundwater often involves anaerobic biodegradation. The knowledge about the microorganisms responsible for PAH degradation in anaerobic subsurface environment is still lacking. DNA-based stable isotope probing (SIP) was applied to discover the microorganisms responsible for anaerobic anthracene degradation within microcosms inoculated with aquifer sediment from landfill leachate-contaminated site. Three phylotypes were identified as the degraders, all falling within the phylum Proteobacteria. Two anthracene degraders were classified within the genera Methylibium and Legionella, while another one was an unclassified Rhizobiales species. They all were first linked to PAH degradation. These findings also provide an illustration of the utility of SIP to discover the roles of uncultured microorganisms in PAH-degrading processes.  相似文献   

12.
The potential of chitosan (0.1% dry weight equivalent) as a bioremediation additive for removal of the recalcitrant polycyclic aromatic hydrocarbon (PAH) pyrene in marine beach sediments was investigated using an open irrigation system over a 63-day period. Osmocote, a slow release fertilizer, was used as the key nutrient supplement at a concentration of 1% in sediment (dry weight equivalent). Osmocote significantly (p < .05) enhanced nutrient levels, and the metabolic activity of the indigenous microbial biomass. Both additives were comparable in stimulating pyrene biodegradation rates; with chitosan (0.062 day?1) being slightly more effective as an amendment than Osmocote (0.051 day?1). Loss of pyrene in a control sediment (i.e., pyrene, without additives) was 66.6% over a 63-day period. The concurrent application of additives yielded the greatest biodegradation rates (0.072day?1), resulting in a 98.2% loss of pyrene over 63 days. The treatment of oil contaminated beach sediments with both osmocote (1%) and chitosan (0.1%) is therefore recommended as an effective treatment for the intrinsic biodegradation of recalcitrant PAHs in oil-contaminated beach sediments.  相似文献   

13.
Sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) is widely distributed in aquatic ecosystems. The microbial community structure of riverbank PAH-contaminated sediments was investigated using phospholipid-derived fatty acid (PLFA) analysis. Surface and subsurface riverbank sediment was collected from a highly contaminated site and from an uncontaminated site along the Mahoning River, OH. PAH concentrations, physical sediment characteristics, and other microbial community parameters (biomass as phospholipid phosphate (PLP) and activity) were also measured. PAHs were detected in all samples but were only quantifiable in the contaminated (250?μg/g?g(-1)) subsurface sediment. Subsurface samples from both locations showed very similar PLP values and distribution of PLFAs, with 27-37?% of the microbial community structure being composed of sulfate reducing and other anaerobic bacteria. Principal components analysis indicated no correlation between PAH contamination and PLFA diversity. Although PLP and phospholipid fatty acid measurements of bacterial communities did not reflect the environmental differences among sites, the highly PAH-contaminated sediment showed the highest measured microbial activity (reduction of 1,200?nmol?INT?g(-1)?h(-1)), likely from a population adapted to environmental pollutants, rates that are much higher than measured in many uncontaminated soil and sediment systems. These data warrant further investigation into community structure at the genetic level and indicate potential for bioremediation by indigenous microbes.  相似文献   

14.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil–water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one—IAFILS9 affiliated to Novosphingobium pentaromativorans—was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species–genera. Only three strains were represented in the screened clones. Eighty-five percent of clones and strains were affiliated to Alphaproteobacteria and Betaproteobacteria; among them, several were affiliated to bacterial species known for their PAH degradation activities such as those belonging to the Sphingomonadaceae. Finally, three genes involved in the degradation of aromatic molecules were detected in the consortium and two in IAFILS9. This study provides information on the bacterial composition of a HWM PAH-degrading consortium and its dynamics in a TLP biosystem during PAH degradation.  相似文献   

15.
Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87%, respectively), and the biodegradation values were higher when nutrients were not added, especially for benzo(a)anthracene and chrysene. The moisture content and aeration were determined to be the key factors associated with PAH bioremediation. Neither biosurfactant addition, bioaugmentation, nor ferric octate addition led to differences in PAH or TPH biodegradation compared to biodegradation with nutrient treatment. All treatments resulted in a high first-order degradation rate during the first 45 days, which was markedly reduced after 90 days. A sharp increase in the size of the heterotrophic and PAH-degrading microbial populations was observed, which coincided with the highest rates of TPH and PAH biodegradation. At the end of the incubation period, PAH degraders were more prevalent in samples to which nutrients had not been added. Denaturing gradient gel electrophoresis analysis and principal-component analysis confirmed that there was a remarkable shift in the composition of the bacterial community due to both the biodegradation process and the addition of nutrients. At early stages of biodegradation, the alpha-Proteobacteria group (genera Sphingomonas and Azospirillum) was the dominant group in all treatments. At later stages, the gamma-Proteobacteria group (genus Xanthomonas), the alpha-Proteobacteria group (genus Sphingomonas), and the Cytophaga-Flexibacter-Bacteroides group (Bacteroidetes) were the dominant groups in the nonnutrient treatment, while the gamma-Proteobacteria group (genus Xathomonas), the beta-Proteobacteria group (genera Alcaligenes and Achromobacter), and the alpha-Proteobacteria group (genus Sphingomonas) were the dominant groups in the nutrient treatment. This study shows that specific bacterial phylotypes are associated both with different phases of PAH degradation and with nutrient addition in a preadapted PAH-contaminated soil. Our findings also suggest that there are complex interactions between bacterial species and medium conditions that influence the biodegradation capacity of the microbial communities involved in bioremediation processes.  相似文献   

16.
[(sup14)C]naphthalene and phenanthrene were oxidized to (sup14)CO(inf2) without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.  相似文献   

17.
Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in primed and nonprimed soil. Thus, the proliferation and persistence of the introduced, soil-adapted degraders had only a marginal effect on PAH degradation. Given the small effect of priming with bioremediated soil and the likely presence of PAH degraders in almost all PAH-contaminated soils, it seems questionable to prime PAH-contaminated soil with bioremediated soil as a means of large-scale soil bioremediation.  相似文献   

18.
Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in primed and nonprimed soil. Thus, the proliferation and persistence of the introduced, soil-adapted degraders had only a marginal effect on PAH degradation. Given the small effect of priming with bioremediated soil and the likely presence of PAH degraders in almost all PAH-contaminated soils, it seems questionable to prime PAH-contaminated soil with bioremediated soil as a means of large-scale soil bioremediation.  相似文献   

19.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH’s naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH’s pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO2 evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25–45 stations covering ∼250 km2. There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r2 > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号