首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Rhizobiaareagriculturallyandenvironmentallyimportantbacteria.Theirsymbiosiswithleguminousplantsisresponsibleformostoftheatmosphericni-trogenfixedonland.Classificationofthesebacteriabasedontheirnaturalrelationshipswillpromotetheirapplication.Thisresearchemploysanewphylogeneticmethod,i.e.,revelationandcomparisonofgenomestructure,tocategorizerhizobia.Phylogenyisthestudyoftheevolutionaryrelationshipsamongorgan-isms[1].Currentlyphylogeneticrelationshipsamongrhizobiaaremostlyinferredfromcomparisons…  相似文献   

2.
Based on the analyses of ribosomal DNA and housekeeping genes, a total of 118 bacterial isolates obtained from 13 Astragalus species grown in the temperate region of China were identified as 19 genomic species of Mesorhizobium, Rhizobium, Sinorhizobium and Bradyrhizobium, two of them being putatively new species. Phylogenetic comparison of symbiotic genes (nodC and nifH) and housekeeping genes showed that the symbiotic genes of the Astragalus rhizobia were maintained by both vertical and horizontal transfer. The results demonstrated that the Astragalus species were very promiscuous hosts for rhizobia and that their rhizobia had very diverse genomic and symbiotic gene backgrounds.  相似文献   

3.
Bacterial phylogenetic clusters revealed by genome structure.   总被引:12,自引:0,他引:12       下载免费PDF全文
Current bacterial taxonomy is mostly based on phenotypic criteria, which may yield misleading interpretations in classification and identification. As a result, bacteria not closely related may be grouped together as a genus or species. For pathogenic bacteria, incorrect classification or misidentification could be disastrous. There is therefore an urgent need for appropriate methodologies to classify bacteria according to phylogeny and corresponding new approaches that permit their rapid and accurate identification. For this purpose, we have devised a strategy enabling us to resolve phylogenetic clusters of bacteria by comparing their genome structures. These structures were revealed by cleaving genomic DNA with the endonuclease I-CeuI, which cuts within the 23S ribosomal DNA (rDNA) sequences, and by mapping the resulting large DNA fragments with pulsed-field gel electrophoresis. We tested this experimental system on two representative bacterial genera: Salmonella and Pasteurella. Among Salmonella spp., I-CeuI mapping revealed virtually indistinguishable genome structures, demonstrating a high degree of structural conservation. Consistent with this, 16S rDNA sequences are also highly conserved among the Salmonella spp. In marked contrast, the Pasteurella strains have very different genome structures among and even within individual species. The divergence of Pasteurella was also reflected in 16S rDNA sequences and far exceeded that seen between Escherichia and Salmonella. Based on this diversity, the Pasteurella haemolytica strains we analyzed could be divided into 14 phylogenetic groups and the Pasteurella multocida strains could be divided into 9 groups. If criteria for defining bacterial species or genera similar to those used for Salmonella and Escherichia coli were applied, the striking phylogenetic diversity would allow bacteria in the currently recognized species of P. multocida and P. haemolytica to be divided into different species, genera, or even higher ranks. On the other hand, strains of Pasteurella ureae and Pasteurella pneumotropica are very similar to those of P. multocida in both genome structure and 16S rDNA sequence and should be regarded as strains within this species. We conclude that large-scale genome structure can be a sensitive indicator of phylogenetic relationships and that, therefore, I-CeuI-based genomic mapping is an efficient tool for probing the phylogenetic status of bacteria.  相似文献   

4.
The complete sequenced genomes of chloroplast have provided much information on the origin and evolution of this organelle. In this paper we attempt to use these sequences to test a novel approach for phylogenetic analysis of complete genomes based on correlation analysis of compositional vectors. All protein sequences from 21 complete chloroplast genomes are analyzed in comparison with selected archaea, eubacteria, and eukaryotes. The distance-based analysis shows that the chloroplast genomes are most closely related to cyanobacteria, consistent with the endosymbiotic origin of chloroplasts. The chloroplast genomes are separated to two major clades corresponding to chlorophytes (green plants) s.l. and rhodophytes (red algae) s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution. For instance, the analysis places the chloroplasts of two chromophytes (Guillardia and Odontella) within the rhodophyte lineage, supporting secondary endosymbiosis as the source of these chloroplasts. The relationships among the green algae and land plants in our tree also agree with results from traditional phylogenetic analyses. Thus, this study establishes the value of our simple correlation analysis in elucidating the evolutionary relationships among genomes. It is hoped that this approach will provide insights on comparative genome analysis.  相似文献   

5.
AIMS: To contribute to the understanding of Cytisus scoparius success at invading and establishing itself in Australia. METHODS AND RESULTS: Root-nodule bacteria isolated from C. scoparius, growing on five different sites and originally introduced to Australia, were compared with isolates from indigenous plants growing in France and isolates from native legumes growing on the same Australian sites as C. scoparius. Small-subunit rDNA from 251 isolates were analysed by PCR-RFLP and representatives from different genospecies were selected for sequencing. Phylogenetic analyses revealed a great diversity of lineages belonging to Bradyrhizobium, with one genospecies being specific for Cytisus both in Australia and in France, Rhizobium and Mesorhizobium and one falling outside the described genera of legume-nodulating bacteria. Principal component analysis showed that the Cytisus Australian rhizobial communities are more similar to each other than to their co-occurring native partners. CONCLUSIONS: Early established rhizobial symbionts may have an increased probability to contribute inoculum for the development of further nodules. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a first report comparing rhizobia nodulating C. scoparius in its native and exotic environments. Cytisus scoparius symbionts were identified outside the Bradyrhizobium genus and a new lineage of legume-nodulating bacteria was identified.  相似文献   

6.
Ribosomal ribonucleic acids are excellent marker molecules for the elucidation of bacterial phylogeny; they also provide useful target sites for identification and detection with nucleic acid probes. Based on the currently available 16S rRNA sequence data, bacteria of the rhizobial phenotype (plant nodulation, nitrogen fixation) are members of three moderately related phylogenetic sub-groups of the -subclass of the Proteobacteria: i.e. the rhizobia group, the bradyrhizobia group, and the azorhizobia group. All rhizobia, azo-, brady-, meso- and sinorhizobia are closely related to and in some cases phylogenetically intermixed with, non-symbiotic and/or non-nitrogen-fixing bacteria. Especially in the case of Bradyrhizobium japonicum strains, the 16S rRNA sequence data indicate substantial heterogeneity. Specific probe design and evaluation are discussed. A multiprobe concept for resolving specificity problems with group specific probes is presented. In situ identification with group specific probes of rhizobia in cultures as well as rhizobia and cyanobacteria within plant material is shown.  相似文献   

7.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

8.
As a result of recent genome sequencing projects as well as detailed biochemical, molecular genetic and physiological experimentation on representative transport proteins, we have come to realize that all organisms possess an extensive but limited array of transport protein types that allow the uptake of nutrients and excretion of toxic substances. These proteins fall into phylogenetic families that presumably reflect their evolutionary histories. Some of these families are restricted to a single phylogenetic group of organisms and may have arisen recently in evolutionary time while others are found ubiquitously and may be ancient. In this study we conduct systematic phylogenetic analyses of 26 families of transport systems that either had not been characterized previously or were in need of updating. Among the families analyzed are some that are bacterial-specific, others that are eukaryotic-specific, and others that are ubiquitous. They can function by either a channel-type or a carrier-type mechanism, and in the latter case, they are frequently energized by coupling solute transport to the flux of an ion down its electrochemical gradient. We tabulate the currently sequenced members of the 26 families analyzed, describe the properties of these families, and present partial multiple alignments, signature sequences and phylogenetic trees for them all.  相似文献   

9.
The extracellular polysaccharides (EPS) of six strains of cowpea rhizobia were examined. The strains (MI50A, M6-7B, IRC253) produced polysaccharides containing glucose, galactose and mannose in a molar ratio of 2:1.1:1, 1:1.3:3.1 and 1:1.3:3.5 respectively. Two strains (513-B and Ez-Aesch) produced polysaccharides containing galactose and mannose in a molar ratio of 2:3. Mannose was the only sugar detected in the EPS of strain IRC291. Pyruvate, acetate, glucuronic acid and galacturonic acid were not detected in any strain.Abbreviations EPS Extracellular polysaccharide - YEMA yeast-extract mannitol agar - YEMB yeast extract mannitol broth  相似文献   

10.
Phylogenetic studies are contributing greatly to our knowledge of relationships on both sides of the plant–bacteria nodulation symbiosis. Multiple origins of nodulation (perhaps even within the legume family) appear likely. However, all nodulating flowering plants are more closely related than previously suspected, suggesting that the predisposition to nodulate might have arisen only once. Phylogenies of 16S rRNA genes highlight the evolutionary diversity of symbiotic bacteria and appear to rule out any broad coevolution with their plant hosts, but high levels of gene transfer might obscure the relevant pattern. The origins of nodulation, and the extent to which developmental programs are conserved in nodules remain unclear, but an improved understanding of the relationships between nodulin genes is providing some clues.  相似文献   

11.
Forty-eight strains of Rhizobium isolated from the root nodules of three species of legumes indigenous to the high tundra (Astragalus alpinus, Oxytropis maydelliana andOxytropis arctobia) are phenotypically heterogenous with respect to intrinsic antibiotic resistance, expression of nitrogenase activityex planta and plasmid content. All of the strains possess a 250–300 kb plasmid and are homologous to each other on the genomic DNA level but have little DNA homology with selected reference strains of well characterized species of rhizobia. The arctic rhizobia have an optimum growth temperature of 23°C and can grow slowly at 5°C. The DNA from four of the isolates, which were selected for detailed investigation, have sequences homologous tonif andnod genes fromRhizobium trifolii.  相似文献   

12.
Mitochondria1 DNA (mtDNA) restriction analysis was used to assess phylogenetic patterns among 21 taxa of the subfamily Coregoninae. The genus Prosopium formed a very distinct group differing by 10% (sequence divergence estimate) from other species. Coregonus and Stenodus species were closely related, diverging by sequence divergence estimates of less than 5.6%. These species split into two major sister groups. One comprised all 'true whitefish' (subgenus Coregonus ) and four cisco species (subgenus Leucichrhys ). The most distant species within this assemblage was the Acadian whitefish ( C. huntsmani ). The other group included all other cisco species and also the Inconnu ( Stenodus leucichthys ). These results supported a polyphyletic origin of the ciscoes, and did not support Stenodus as a sister taxon of the genus Coregonus . The levels of sequence divergence observed suggested that most extant coregonines radiated during the Pleistocene.  相似文献   

13.
Biological nitrogen fixation (BNF) technology with special reference to Rhizobium-legume symbiosis is growing very rapidly with the hope of combatting world hunger by producing cheaper protein for animal and human consumption in the Third World. One can see rapid progress made in the biochemistry and molecular biology of symbiotic nitrogen fixation in general; however, less progress has been made on the ecological aspects despite the fact that an enormous amount of literature is available on inoculation problems and on agronomic aspects of symbiotic nitrogen fixation. So far most information on Rhizobium concerns fast-growing rhizobia and their host legume. Although it is essential that food production using BNF technology should be maximized in the Third World, the least work has been done on slow-growing rhizobia, which are generally found in tropical and sub-tropical soils. The majority of the developing countries are in tropical and sub-tropical regions. Except for R. japonicum, a microsymbiont partner of soybean (Glycine max), the majority of the slow-growing rhizobia belong to the cowpea group, and we refer to cowpea rhizobia as tropical rhizobia species. In this review we have tried to consolidate the recent progress made on ecology and genetics of tropical rhizobia. By using recombinant DNA technology techniques it is expected that super strains of rhizobia with desirable characteristics can be produced. One must evaluate the efficiency and effectiveness of these genetically manipulated laboratory strains under field conditions. In conclusion, if one aims at combatting hunger in the Third World using BNF technology, an intensive research programme on fundamental and applied aspects of tropical rhizobia species is suggested. This involves close cooperation between molecular biologists and microbial ecologists.  相似文献   

14.
Rhizobia are a group of bacteria that form nodules on the roots of legume host plants. The sequenced genomes of the rhizobia are characterized by the presence of many putative insertion sequences (IS) elements. However, it is unknown whether these IS elements are functional and it is therefore relevant to assess their transposition activity. In this work, several functional insertion sequences belonging to the IS1256, IS3, IS5, IS166, and IS21 families were captured from Rhizobium tropici, Rhizobium sp. NGR234 and Sinorhizobium meliloti, using pGBG1 as a trapping system. In silico analysis shows that homologs of rhizobia mobile elements are present in distantly related genomes, suggesting that Rhizobium IS elements are prone to genetic transfer.  相似文献   

15.
The Trichoptera (caddisflies) is a holometabolous insect order with 14,300 described species forming the second most species-rich monophyletic group of animals in freshwater. Hitherto, there is no mitochondrial genome reported of this order. Herein, we describe the complete mitochondrial (mt) genome of a caddisfly species, Eubasilissa regina (McLachlan, 1871). A phylogenomic analysis was carried out based on the mt genomic sequences of 13 mt protein coding genes (PCGs) and two rRNA genes of 24 species belonging to eight holometabolous orders. Both maximum likelihood and Bayesian inference analyses highly support the sister relationship between Trichoptera and Lepidoptera.  相似文献   

16.
Effects of salt on rhizobia and bradyrhizobia: a review   总被引:2,自引:0,他引:2  
Rhizobia and bradyrhizobia strains vary in their tolerance to salt-stress. Rhizobium strains (fast-growers) are more salt-tolerant than strains of Bradyrhizobium (slow-growers). However, salt-tolerance in both genera is dependent upon ionic species, pH value, temperature, carbon source and the presence of osmoprotectant solutes. The harmful effect of salts on growth of both genera can be attributed to the specific ion effect rather than the osmotic effect. The salt-tolerance of different strains of rhizobia and bradyrhizobia is not related to their ecological origin. Data for salt tolerance of 684 strains of rhizobia and bradyrhizobia were collected from many reports. Most of the reports confound the effects of salt and express the concentrations of salts in percentage (%), electrical conductivity (dS m-1), molar concentration (m ) or osmotic pressure (MPa) regardless of their differences. All the published data were compiled and recalculated from the different expressions to their equivalent molar concentration (m ) of NaCl. A suggested classification of salt-tolerance of rhizobia and bradyrhizobia from the compiled data is presented.  相似文献   

17.
The phylogenetic positions of bryophytes and charophytes, together with their genome features, are important for understanding early land plant evolution. Here we report the complete nucleotide sequence (105,340 bp) of the circular-mapping mitochondrial DNA of the moss Physcomitrella patens. Available evidence suggests that the multipartite structure of the mitochondrial genome in flowering plants does not occur in Physcomitrella. It contains genes for 3 rRNAs (rnl, rns, and rrn5), 24 tRNAs, and 42 conserved mitochondrial proteins (14 ribosomal proteins, 4 ccm proteins, 9 nicotinamide adenine dinucleotide dehydrogenase subunits, 5 ATPase subunits, 2 succinate dehydrogenase subunits, apocytochrome b, 3 cytochrome oxidase subunits, and 4 other proteins). We estimate that 5 tRNA genes are missing that might be encoded by the nuclear genome. The overall mitochondrial genome structure is similar in Physcomitrella, Chara vulgaris, Chaetosphaeridium globosum, and Marchantia polymorpha, with easily identifiable inversions and translocations. Significant synteny with angiosperm and chlorophyte mitochondrial genomes was not detected. Phylogenetic analysis of 18 conserved proteins suggests that the moss-liverwort clade is sister to angiosperms, which is consistent with a previous analysis of chloroplast genes but is not consistent with some analyses using mitochondrial sequences. In Physcomitrella, 27 introns are present within 16 genes. Nine of its intron positions are shared with angiosperms and 4 with Marchantia, which in turn shares only one intron position with angiosperms. The phylogenetic analysis as well as the syntenic structure suggest that the mitochondrial genomes of Physcomitrella and Marchantia retain prototype features among land plant mitochondrial genomes.  相似文献   

18.
Existing methods for detection and identification of rhizobia are reviewed. Some perspectives for development of new and more effective techniques for monitoring of rhizobia in soil and in inoculants are presented. The advantages of the recently developed approach — PCR-genome fingerprinting, by use of arbitrary and repetitive primers, for precise bacterial identification are described. The possible application of this technique for developing taxon-specific rhizobial probes for direct detection of these bacteria in environmental samples is discussed.  相似文献   

19.
根瘤菌与群体感应   总被引:2,自引:0,他引:2  
细菌在高细胞密度下可以产生群体感应信号分子,调控细菌相关基因的表达,这种信号分子被称为自体诱导物。酰基高丝氨酸内酯类化合物(acyl-HSLs)是在根瘤菌中广泛存在的一类自体诱导物,该群体感应系统与根瘤菌和植物的共生作用密切相关。本文概述了AHLs介导的群体感应系统的组成及调控机制和不同根瘤菌中群体感应调节对根瘤菌生理行为及共生固氮的影响。  相似文献   

20.
Molecular phylogenetic studies were performed by the alignment of protein/nucleotide sequences of human/simian immunodeficiency virus (HIV/SIV), followed by the construction of phylograms according to maximum likelihood method. We aimed to investigate the evolutionary relationship of the recombinant SIVcpzMT145, to other well-known SIVcpz and HIV-1 viruses. Expectedly, MT145 follows the rule of feasible recombination occurrence in SIVcpz clade as to it consists several recombinations in different genome sites including gag, Pol, and Env region. Phylograms indicated that in Pol gene, MT145 is more related to GAB1 and CAM13 SIVs; while in Env gene, it has a closed relationship to GAB2 SIV. Moreover, MT145 differs from other SIVcpzPtt strains in the Env V3 loop having the QIGPAMT motif (same as HIV-1N), instead of usual QIGPGMT motif in these strains. Data indicated that the Env proteins contain considerable amino acid sequence diversification. Overall, this study suggests that, parts of the Gag and especially Vpu/Env gene sequences of SIVcpzMT145 were derived from an unknown SIVcpz lineage ancestral to HIV-1 group M/MB66.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号