首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The submerged aquatic plant Myriophyllum spicatum L. (Eurasian water milfoil) has been suggested as an efficient plant species for the treatment of metal-contaminated industrial wastewater. The process of metal removal by plants involves a combination of rapid sorption on the surface and slow accumulation and translocation in the biomass. This study focussed on the sorption/desorption characteristics of the surface of M. spicatum for Co, Cu, Ni and Zn. Batch sorption tests with mixed metal solutions covering a range of 0, 1, 5, 10, 50 and 100 mg l−1 of each metal, were performed. For Co, Ni and Zn, the sorption process was well described by the Langmuir model, whereas sorption of Cu was better described by the Freundlich model. The biomass showed the highest affinity for Cu and Zn. Langmuir sorption maxima of Co, Ni and Zn were 2.3, 3.0 and 6.8 mg g−1 DM, respectively. At the highest initial concentration of 100 mg l−1, a maximum of 29 mg g−1 DM of Cu was sorbed onto the surface of the biomass. Desorption by 0.1 M HCl did not fully recover the metals sorbed onto the surface and there was evidence of leaching from within the biomass. Recovery of heavy metals and regeneration of the biomass by washing with 0.1 M HCl was therefore not suggested as a viable strategy.  相似文献   

2.
Abstract

The purpose of the work was to characterize changes in surface textures of minerals during the biological leaching of a complex sulfide ore. The ore contained pyrrhotite (FeI_xS), pyrite (FeS2), sphalerite (ZnS), pentlandite [(Ni,Fe,Co)9S8], and chalcopyrite (CuFeS2). Several mixed cultures were initially screened using the ore material as the sole substrate. Shake flask leaching experiments showed no major differences among test cultures, which were all derived by enrichment techniques using environmental samples collected from a mine site. Leached pyrrhotite surfaces were invariably surrounded by a dark rim of elemental S. A reaction zone was also associated with leached sphalerite grains. Chemical analyses of leach solutions indicated that the relative ranking of biological leaching of the sulfide minerals was Zn > Ni > Co > Cu. Microscopic observations were in keeping with this rankin  相似文献   

3.
A program to monitor nutrients and heavy metal ions concentrations in addition to selected bacterial communities counts was carried out at three sites along the eastern coast of the United Arab Emirates on the Gulf of Oman. Total saprophytic bacteria (TSB), salt tolerant saprophytic bacteria (STSB), Gram-negative bacteria (GNB), total coliform (TC), and faecal coliform bacteria (FC) were enumerated. The concentrations of heavy metal ions including Mn, Fe, Pb, Cd, Zn, Cr, Ni, Co and Cu were determined by atomic absorption spectrometry. Bacterial counts had a distinct pattern with peaks in mid spring (May) and in autumn (October). The TSB, STSB and the GNB ranges fluctuated between, 3.3 × 104 to 4 × 105, 1.8 × 104 to 2.5 × 105 and 0.7 × 104 to 1.3 × 105 colony forming units (CFU) ml–1, respectively. Total and faecal coliform bacteria fluctuated depending on several factors including the presence of nearby recreation and commercial areas, but were at no time consistently high.Bacillus, Pseudomonas, Staphylococcus, Micrococcus and Alteromonas, were the predominant bacterial genera in these waters. Major nutrients and trace heavy metal ions concentrations were within the normal ranges for sea water with occasional sharp fluctuations in some sites. It was generally concluded that the area is slightly polluted.  相似文献   

4.
A mixed culture of Thiobacillus ferrooxidans, T. thiooxidans, and Leptospirillum ferrooxidans was used for inoculation of a sulphidic ore body for a bacterial in-situ stope-leaching experiment in the Ilba mine in Romania. The ore body was inoculated with 107 cells/g ore. Measurements at six main sites of the ore body indicated that microbial leaching was started by the inoculation. After about 8 weeks, sufficient microbial activity was measurable only in the upper third of the ore body. Due to the angle of incidence of the ore (75°), the leach liquor percolated only through the upper part leaving two-thirds humidified unsatisfactorily. The leach results, metal mobilization, indicated that by inoculation with the indigenous microorganisms efficient leaching was achieved. Metal output after 18 months of operation amounted to 10% of Cu and 78% of Zn. In the winter months energy for aeration and circulation was not available and this was reflected by reduced values for microbial activity, temperature, and daily metal output. The biological metal mobilisation after 18 months of operation was as active as at the beginning. Cu was mobilised predominantly by microbial leaching whereas Zn was leached mainly by chemical reactions. Both mechanisms contributed equally to iron output. Correspondence to: W. Sand  相似文献   

5.
A column experiment with horizontal permeable barriers was conducted to investigate phytoextraction of heavy metals by Lolium perenne L. from municipal solid waste compost following EDTA application, as well as to study the effects of L. perenne and permeable barriers on preventing metal from leaching. In columns with barriers, EDTA addition yielded maximum concentrations of Cu, Zn and Pb of 155, 541 and 33.5 mg kg−1 in shoot, respectively. This led to 4.2, 2.1 and 7.4 times higher concentrations of Cu, Zn and Pb compared to treatment with no chelating agent, respectively. In treatments with 10 mmol kg−1 EDTA, the barriers reduced leaching of Cu, Zn and Pb by approximately three times, respectively, resulting in leaching of total initial Cu, Zn and Pb by 27.3%, 25.2% and 28.8%, respectively, after four times’ irrigation. These results indicate that L. perenne and permeable barriers are effective to reduce leaching of heavy metals and minimize the risk of contaminating groundwater in EDTA-enhanced phytoremediation. Thus these findings highlight that turfgrass and permeable barriers can effectively prevent metal leaching.  相似文献   

6.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

7.
Anthropogenic activities like agriculture have resulted in increased concentrations of some trace elements of toxicological and environmental concern in soils. Application of fertilizers has been one of the major inputs of these contaminants to agricultural soils in developing countries. Twenty-two fertilizers, including straight nitrogen (N), phosphorus (P), potassium (K), and NK fertilizers and micronutrient sources, were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). As expected, the trace element content of fertilizers was highly variable and related to the origin of the material. Phosphorus fertilizers, especially triple superphosphate, presented the highest As, Cd, Cu, Cr, Ni, V, and Zn concentrations. In some of these fertilizers, the Cr, V, and Zn contents reached values greater than 3475 mg kg?1 of P, and the Cd content (up to 288 mg kg?1 of P) was several times higher than the regulatory limits of different countries. Some micronutrient sources presented the highest concentrations of Mn and Pb. In the cases of N, K, and NK fertilizers, the trace element concentration was very low, sometimes below the detection limits. In some agricultural systems the input of trace elements such as As and Cd to the soil through P fertilizers application may be higher than the outputs through plant uptake and leaching; therefore the long-term use of these fertilizers may cause the trace element concentration to increase in the plow layer of agricultural soils.  相似文献   

8.
Finely ground ore material (90%–200 mesh) was subjected to acid microbiological leaching in 20% and 30% (wt/vol) suspensions. The rate of aeration was maintained at 2 and 4 1/min · 1. After the onset of the microbiological phase of leaching, the solubilization of iron was initially rapid but was succeeded by Fe(III) precipitation. Major differences were apparent between inoculated and uninoculated suspensions for each metal analyzed (Fe, Al, Co, Cu, Ni, Zn). The sulfur balance in leach residues indicated elevated levels of elemental S and sulfate in the inoculated systems.  相似文献   

9.
Iron- and sulfur-oxidizing bacteria identified as Thiobacillus ferrooxidans and T. thiooxidans were successfully enriched from various soil samples contaminated with heavy metals and organic compounds. Depending on the growth medium, the soil sample, and the type of contaminant, the indigenous isolates solubilized > 50% of most of the heavy metals present in the solid sample (As, Cd, Co, Cr, Cu, Ni, V, Zn, B, Be). Leaching with T. ferrooxidans strains resulted in total extraction of Cd, Co, Cu, and Ni. With sulfur-oxidizing bacteria > 80% of Cd, Co, Cu, and Zn was mobilized from rainwater sludge. Pb and Ba were not detected in the leachate, given the insolubility of their sulfate compounds. An increase in pulp density up to 20%, indicating 6.6% total organic carbon in the soil and rubble leach experiment (sample 557), did not inhibit the growth of the indigenous T. ferrooxidans strain. In view of these results, bioleaching appears to have some potential for remediation of heavy metal contaminated soils.  相似文献   

10.
During iron oxidation,Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans) was able to tolerate high concentrations of Zn, Ni, Cu, Co, Mn and Al (more than 10 g/litre). Silver and anions of tellurium, arsenic and selenium were toxic in concentrations of 50–100 mg/litre. Molybdenum (as molybdate), at concentrations above 5 mg/litre, was lethal toT. ferrooxidans. During thiosulphate oxidation, the tolerance to Zn, Ni and Co was greatly reduced, cobalt now being at least 2000 times more toxic, and the inhibitory levels of Zn and Ni being 600 mg Zn/litre and 150 mg Ni/litre. During sulphur oxidation, the tolerance to heavy metals extended to concentrations above 5 g/litre. Adaptation to Zn, Ni or Cu during iron oxidation was found to result in increased tolerance to some of the other metals also.  相似文献   

11.
BackgroundThe human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure.MethodsIsothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na+] or [K+]  0.15 M).ResultsThe apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a “four-independent-sites model”. The two highest-affinity sites exhibit a K in the range of 108 to 1010 M 1 with the two lower-affinity sites exhibiting a K in the range of 104 to 105 M 1. Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a “two-independent-sites model” in which only the end-stacking binding mode is observed with a K in the range of 104 to 105 M 1.ConclusionsIn the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an “end stacking” mechanism for the higher affinity binding mode and an “intercalation” mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the “end-stacking” mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands.General significanceThe preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

12.
Present work describes the bioleaching potential of metals from low-grade mining ore containing smithsonite, sphaerocobaltite, azurite and talc as main gangue minerals with adapted consortium of Sulfobacillus thermosulfidooxidans strain-RDB and Thermoplasma acidophilum. Bioleaching potential improved markedly by added energy source, acid preleaching and adaptation of microbial consortium with mixed metal ions. During whole leaching period including acid preleaching stage of 960 h and bioleaching stage of 212 days about 76% Co, 70% Zn, 84% Cu, 72% Ni and 63% Fe leached out.  相似文献   

13.
Our survey of cooling tower water demonstrated that the highest density of legionellae, ≥104 CFU/100 ml, appeared in water containing protozoa, ≥102 MPN/100 ml, and heterotrophic bacteria, ≥106 CFU/100 ml, at water temperatures between 25 and 35°C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 105 CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not with heterotrophic bacterial counts. The water temperature of cooling towers may promote increases in the viable counts of legionellae, and certain microbes, e.g., protozoa or some heterotrophic bacteria, may be a factor stimulating the propagation of legionellae.  相似文献   

14.
Potentiometric, visible, and infrared studies of the complexation of N-(2-acetamido)-2-aminoethanesulfonic acid (ACESH) by Ca(II), Mg(II), Mn(II), Co(II), Zn(II), Ni(II), and Cu(II) are reported. Ca(II), Mg(II), and Mn(II) were found not to complex with ACES?, while Co(II), Zn(II), Ni(II), and Cu(II) were found to form 2:1, ACES? to M2+, complexes, and [Cu(ACES)2] was found to undergo stepwise deprotonation of the amide groups to form [Cu(H?1ACES)22?]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed.  相似文献   

15.
Protein binding, DNA binding/cleavage and in vitro cytotoxicity studies of 2-((3-(dimethylamino)propyl)amino)naphthalene-1,4-dione (L) and its four coordinated M(II) complexes [M(II) = Co(II), Cu(II), Ni(II) and Zn(II)] have been investigated using various spectral techniques. The structure of the ligand was confirmed by spectral and single crystal XRD studies. The geometry of the complexes has been established using analytical and spectral investigations. These complexes show good binding tendency to bovine serum albumin (BSA) exhibiting high binding constant values (105 M?1) when compared to free ligand. Fluorescence titration studies reveal that these compounds bind strongly with CT-DNA through intercalative mode (Kapp 105 M?1) and follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > L. Molecular docking study substantiate the strength and mode of binding of these compounds with DNA. All the complexes efficiently cleaved pUC18-DNA via hydroxyl radical mechanism and the Cu(II) complex degraded the DNA completely by converting supercoiled form to linear form. The complexes demonstrate a comparable in vitro cytotoxic activity against two human cancer cell lines (MCF-7 and A-549), which is comparable with that of cisplatin. AO/EB and DAPI staining studies suggest apoptotic mode of cell death, in these cancer cells, with the compounds under investigation.  相似文献   

16.
Bioleaching of sulfide minerals at neutral pH has been rarely reported. In this study, a bacterium, Bacillus megaterium QM B1551, was isolated from Jinchuan sulfide tailings and used to leach a complex sulfide flotation concentrate for the extraction of Co2+, Ni2+ and Cu2+ at near neutral pH. A total of 38.2% Co, 44.7% Ni and 3.6% Cu were extracted from the sulfide concentrate in 5 days with an initial pH of 6. An enhanced Co2+, Ni2+ and Cu2+ extraction extent was achieved by first bioleaching the concentrate with Bacillus megaterium QM B1551 at 35°C and then followed by chemical leaching with 4 M sulfuric acid at 90°C. As a result, a total of 60.7% Co2+, 76.3% Ni2+ and 39.8% Cu2+ were extracted. On an industrial scale, the profits from the metal recovery by such a combined leaching procedure are optimum if considering the cost-benefit ratio.  相似文献   

17.
Bacteriophage populations in an activated-sludge sewage treatment plant were enumerated. A newly developed assay for quantitation of total phages, employing direct electron microscopic counts, was used in conjunction with the plaque assay. The total concentration of phages was significantly higher in reactor mixed liquor and effluent than in influent sewage, indicating a net production of phages within the reactor. Maximum total phage concentrations in the fluid phase of sewage, activated-sludge mixed liquor, and reactor effluent were 2.2 × 107, 9.5 × 107, and 8.4 × 107/ml, respectively. Conditions were optimized for isolation of predominant heterotrophic aerobic bacteria from sewage and mixed liquor. Blending at ice water temperatures was superior to ultrasound or enzyme treatments for maximum release of viable bacteria from microbial floc. A solidified extract of mixed liquor was superior to standard media for cultivating maximum numbers of heterotrophic bacteria. The highest culture counts for sewage and mixed liquor were 1.4 × 107 and 1.3 × 109/ml, respectively, which represented only 3 and 6.8% of the total microscopic cell counts. Only 3 out of 48 dominant bacterial isolates from either mixed liquor or sewage were hosts for phages present in the system. The sum of phage populations infecting these three hosts accounted for, at best, 3.8% (sewage) and 0.2% (mixed liquor) of the total number of phages present. Generally, specific phage titers were lower in mixed liquor than in sewage, indicating that these hosts were not responsible for the net production of phages in the reactor. This study emphasizes the limitations of the plaque assay for ecological studies of phages, and it suggests that bacteria responsible for phage production in activated-sludge mixed liquor are either minor components of the heterotrophic population, floc-producing strains, or members of other physiological groups.  相似文献   

18.
Accumulation of different metals and metalloids was assessed in two vegetables radish (Raphanus sativus L.) and spinach (Spinacea oleracea L.) irrigated with domestic wastewater in the peri-urban areas of Khushab City, Pakistan. In general, the metal and metalloid concentrations in radish and spinach were higher at site-II treated with sewage water than those found at site-I treated with canal water. In case of radish at both sites the levels of metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, and Pb) were below the permissible level except those of Mn, Ni, Mo, Cd, and Pb. At both sites, the transfer factor ranged from 0.047–228.3 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: As > Fe > Ni > Zn > Cd > Mo > Se > Co > Pb > Mn > Cr > Cu, respectively. While in case of spinach at both sites, the concentrations of metals and metalloids in vegetable samples irrigated with canal and sewage water were observed below the permissible level except Mn, Ni, Zn, Mo, and Pb. At both sites, the transfer factor ranged from 0.038–245.4 mg kg?1 with Cr having the highest transfer factor. The metal pollution index in soil was in the following order: Cd > Ni > Co > Se > Mn > Zn > Mo > Pb > Fe > Cr > As > Cu, respectively.  相似文献   

19.

This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H2O2, no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H2O2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582 cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582 cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  相似文献   

20.
Abstract

This study investigated the airborne concentration of PM10 and 20 trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Na, Pb, Ti, V, Zn) in residential, industry, traffic road, coal mining, thermal power plant area of Bac Giang province. The average PM10 concentration was highest at coal site, followed by traffic 1 sites, industrial sites and traffic 2 sites, the residential sites, and lowest at the power plant site located in mountain area. While Al, Ca, Fe, K, Mg, Na were the most abundant elements in all sampling sites, accounting for 73–96% of total obtained elements, the concentration of As, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn occupied from 2.9 to 23.2%. Noticeably, the concentrations of Cd were from 7 to 65 times higher than the concentration limit for Cd (0.1?ng/m3) according the World Health Organization (WHO). Although, the Hazard Index (HI values) of all metals were found to be within the safe level for both children and adults, the Carcinogenic Risk (CR) of Cr and As in all sites were closed to the acceptable levels for children, implying a potential carcinogenic risks of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号