首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoaffinity labeling with azidoadenine nucleotides was used to identify peptides from the ATP and AMP binding domains on chicken muscle adenylate kinase. Competition binding studies and enzyme assays showed that the 8-azido analogues of Ap4A and ATP modified only the MgATP2- site of adenylate kinase, whereas the 2-azido analogue of ADP modified the enzyme at both the ATP and AMP sites. The positions of the two nucleotide binding sites on the enzyme were deduced by isolating and sequencing the modified peptides. Photolabeled peptides were isolated by a new procedure that used metal chelate chromatography to affinity purify the photolabeled peptides prior to final purification by reverse-phase HPLC. The sequences of the peptides that were photolabeled with the 8-azido analogues corresponded to residues K28-L44, T153-K166, and T125-E135 of the chicken muscle enzyme. The residues that were present in both tryptic- and Staphylococcus aureus V-8 protease-generated versions of these peptides were assigned to the ATP binding domain on the basis of selective photoaffinity labeling with the 8-azidoadenine analogues. These peptides and an additional peptide corresponding to positions I110-K123 were photolabeled with 2-N3ADP. Since I110-K123 was photolabeled by 2-N3ADP but not by 8-N3Ap4A, it was assigned to the AMP binding domain.  相似文献   

2.
Adenylate kinase has two distinct binding sites for nucleotide substrates, MgATP and AMP. To identify the location of the site that specifically interacts with the adenine ring of AMP, we have substituted Ala, Gly, Val, Gln, and Trp for Leu66 of the recombinant chicken muscle enzyme by site-directed mutagenesis. All the purified Leu66 mutant enzymes exhibited an essentially identical circular dichroism spectrum and had thermal stabilities similar to the wild-type enzyme. Steady state kinetic analysis showed that the Leu66 mutant enzymes have significantly decreased Vmax values and markedly large Km values only for AMP. These results show that the binding site for the adenine ring of AMP in adenylate kinase is presumably located close to Leu66, which is invariant in all the enzymes so far sequenced. Significant inhibition of activities of the mutant enzymes and quenching of the Trp66 fluorescence by substrates suggest that in some Leu66 mutant enzymes, MgATP also binds to the AMP-binding site. Thus, Leu66 of adenylate kinase might play a role in the asymmetric recognition of the adenine ring of AMP from that of MgATP. Furthermore, the hydrophobicity of the residue at position 66 appears to be important for the positive cooperativity of substrate binding.  相似文献   

3.
T Dahnke  Z Shi  H Yan  R T Jiang  M D Tsai 《Biochemistry》1992,31(27):6318-6328
The structural and functional roles of two conserved active site residues, Arg-97 and Arg-132, in chicken muscle adenylate kinase (AK) were evaluated by site-directed mutagenesis in conjunction with one- and two-dimensional proton nuclear magnetic resonance (NMR), kinetics, and guanidine hydrochloride-induced denaturation. In addition, 31P NMR analysis was used to evaluate the contribution of Arg-97 to the phosphorus stereospecificity of AK. The results and conclusions are summarized as follows: (i) Kinetic analysis of R97M reveals 6- and 28-fold increases in the dissociation constant Ki and Michaelis constant K of AMP, respectively, and a moderate 30-fold decrease in kcat. The Ki and K values of MgATP are relatively unperturbed. The localized effect of AMP stabilization was independently confirmed by proton NMR titration, which showed a ca. 20-fold increase in the dissociation constant of AMP but not of MgATP. (ii) R132M affords a dramatic decrease in kcat by a factor of 8.0 x 10(3), with unchanged dissociation and Michaelis constants for either substrate. The lack of perturbation in the affinities toward substrates was confirmed by proton NMR titration. (iii) Although small chemical shift changes were observed for the free mutants and their complexes with substrates, further analyses by nuclear Overhauser enhanced spectroscopy with the bisubstrate analogue inhibitor, P1,P5-bis(5'-adenosyl)pentaphosphate (AP5A), indicated little perturbation in the global conformation. (iv) Contributions to conformational stability by Arg-97 and Arg-132 are negligible on the basis of the free energy of unfolding, delta GdH2O. (v) R97M was predicted and demonstrated to exhibit enhanced stereospecificity at the AMP site by at least 10-fold relative to WT in the conversion of adenosine 5'-monothiophosphate to adenosine 5'-(1-thiodiphosphate). This result for R97M was predicted on the basis of the orientation of Arg-97 relative to Arg-44 and AMP in the active site as observed in available crystal structures and the stereospecificity results of R44M [Jiang, R.-T., Dahnke, T., & Tsai, M.-D. (1991) J. Am. Chem. Soc. 113, 5485-5486]. (vi) The above structural and functional analyses led us to conclude that Arg-97 interacts with the phosphoryl group of AMP, beginning at the binary complex (1-2 kcal/mol), continuing through the transition state (3.5 kcal/mol), and that Arg-132 stabilizes the transition state by greater than 5 kcal/mol. (vii) The functional importance of Arg-97 appears to be similar to that of Arg-44 [Yan, H., Dahnke, T., Zhou, B., Nakazawa, A., & Tsai, M.-D. (1990) Biochemistry 29, 10956-10964].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The first characterization of the kinetics and subcellular compartmentation of adenylate kinase activity in intact muscle has been accomplished using rat diaphragm equilibrated with [18O]water. Rates of adenylate kinase-catalyzed phosphoryl transfer were measured by appearance of 18O-labeled beta-phosphoryls in ADP and ATP resulting from the transfer to AMP of newly synthesized 18O-labeled gamma-ATP. Unique features of adenylate kinase catalysis were uncovered in the intact cell not predictable from cell free analysis. This enzyme activity, which in non-contracting muscle is limited to 1/1000 of the estimated Vmax (cell free) apparently because of restricted ADP availability, is localized in subcellular compartments that increase in size and/or number with contractile frequency. Contraction also causes frequency-dependent increments in adenylate kinase velocity (22-fold at 4 Hz) as does oxygen deprivation (35-fold). These enhanced rates of adenylate kinase activity, equivalent to processing all the cellular ATP and ADP in approximately 1 min, occur when levels of ATP, ADP, and AMP are maintained very near their basal steady state. These characteristics of the dynamics of adenylate kinase catalysis in the intact cell demonstrate that rapid rates of AMP production from ADP are balanced by equally rapid rates of AMP phosphorylation with no net synthesis or accumulation of any adenine nucleotide. This rapid processing of nucleotide phosphoryls conforms to a proposed scheme whereby the adenylate kinase system provides the unique function of transferring, as beta-ADP, high energy phosphoryls generated by glycolytic metabolism to ATP-utilizing components in muscle.  相似文献   

5.
An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.  相似文献   

6.
Substrate-induced conformational change of porcine muscle adenylate kinase (EC 2.7.4.3) is evidenced by a change in circular dichroism spectra in the near ultraviolet. In the absence of tryptophan in porcine muscle adenylate kinase, the spectral change may be assigned to a perturbation of tyrosine chromophore(s). The spectral change was specific for adenine nucleotide binding and was greater with ATP than with AMP. In the x-ray model, Tyr153 and Tyr154 are located at a hinge region of two domains which form a deep active site cleft and are therefore susceptible to conformational change on substrate binding. Adenylate kinase was treated with equimolar tetranitromethane. The yellow-colored product, separated from unmodified enzyme by substrate gradient elution on a phosphocellulose column, had about 1 mol of nitrotyrosine per mol of the enzyme by amino acid analysis and showed a slightly higher Km value than native enzyme for ADP (Km = 0.50 mM compared with 0.25 mM for native adenylate kinase). Spectrophotometric titration of nitroadenylate kinase gave pKa 8.4 for the dissociation constant of the nitrotyrosyl hydroxyl group. On binding ATP the pKa value increased to 9.0 while AMP binding caused very little change. By peptide mapping of the carboxypeptidase digestion product, 0.70 mol of nitro group per mol of adenylate kinase was detected on Tyr153 and a small amount of nitro group was also found on Tyr95. From these results it is proposed that Tyr153 is directly or indirectly involved in the binding of ATP.  相似文献   

7.
1. The kinetic properties of two genetic variants of human erythrocyte adenylate kinase were studied at limiting concentrations of both ADP and MgADP(-) in the forward direction and at limiting concentrations of both AMP and MgATP(2-) in the reverse direction. 2. Primary reciprocal plots rule out the possibility of a Ping Pong mechanism for both forms of the enzyme. 3. Analysis of the kinetic data by an appropriate computer program gave the following K(m) values for the type 1 enzyme: AMP, 0.33mm+/-0.1; MgATP(2-), 0.95mm+/-0.13; ADP, 0.12mm+/-0.03; MgADP(-), 0.22mm+/-0.04. Values for the type 2 enzyme were: AMP, 0.27mm+/-0.03; MgATP(2-), 0.40mm+/-0.05; ADP, 0.08mm+/-0.07; MgADP(-), 0.20mm+/-0.04. 4. Product inhibition studies were done by studying the reverse reaction. With ADP as product inhibitor competitive inhibition patterns were obtained with AMP and/or MgATP(2-) as variable substrate. Similar results were obtained for product inhibition by MgADP(-) with AMP as variable substrate. The results are consistent with a Rapid Equilibrium Random mechanism. 5. Secondary plots of slope versus product concentration were linear. The data were fitted to the appropriate equation and analysed by computer to give values for the product inhibition constants. 6. Differences between the values of certain kinetic constants for the two forms of the enzyme were observed.  相似文献   

8.
Adenosine diphosphopyridoxal, the affinity labeling reagent specific for a lysyl residue in the nucleotide-binding site of several enzymes (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964; Tamura, J. K., Rakov, R. D., and Cross R. L. (1986) J. Biol. Chem. 261, 4126-4133) was applied to adenylate kinase from rabbit muscle. Incubation of the enzyme with a low concentration of the reagent at 25 degrees C for 20 min followed by reduction by sodium borohydride resulted in rapid inactivation of the enzyme. Extrapolation to 100% loss of enzyme activity gave a value of 1.0 mol of the reagent per mol of enzyme. ADP, ATP, and MgATP almost completely protected the enzyme from inactivation, whereas AMP offered little retardation of the inactivation. Dilution of the inactivated enzyme which had not been treated with the reducing reagent led to restoration of enzyme activity. This reactivation was accelerated by ATP but not by AMP. Structural study of the labeled peptide showed that Lys21 is exclusively labeled by adenosine diphosphopyridoxal. These results suggest that the epsilon-amino group of Lys21 is located in the ATP-binding site of the enzyme, more specifically at or close to the subsite for the gamma-phosphate of the nucleotide.  相似文献   

9.
Electrophoretically homogeneous coupling factor 1 from spinach chloroplasts binds ADP and converts the bound ADP to bound ATP and AMP. That this transphosphorylation of enzyme-bound ADP is catalyzed by the coupling factor itself, and not be a conventional adenylate kinase which might possibly contaminate preparations of the coupling factor, is supported by the following evidence. 1. The procedure for isolatio of the coupling factor is designed to separate this large (approximately 13 S) enzyme from the smaller (4.2 S) conventional adenylate kinase of spinach chloroplasts. The conventional adenylate kinase cannot be detected in purified preparations of the coupling factor by biochemical assay or by polyacrylamide gel electrophoresis. 2. The activity of spinach adenylate kinase is completely dependent upon magnesium ions. However, the production of bound ATP and AMP from bound ADP by the coupling factor can be assayed in the total absence of added magnesium ions or even in the presence of added EDTA. 3. Comparative studies with inhibitors show that the coupling factor can produce bound ATP from ADP under conditions where the activity of adenylate kinase is strongly inhibited. Conversely, the coupling factor is prevented from synthesizing bound ATP from ADP under other conditions where the conventional adenylate kinase has high levels of activity. 4. AMP, when added in solution to the coupling factor, does not bind to this enzyme, even in the presence of APT. Thus, it is unlikely that the appearance of AMP bound to the coupling factor after its incubation with ADP is due to the production of free AMP by contaminating adenylate kinase. These results demonstrate that the isolated, homogeneous coupling factor from spinach chloroplasts has the intrinsic capacity to perform a phosphoryl group transfer between two bound ADP molecules and thus to synthesize ATP. This reaction may have an important role in the photosynthetic production of ATP by the chloroplast, as is discussed in this communication.  相似文献   

10.
Han Y  Li X  Pan X 《FEBS letters》2002,528(1-3):161-165
There are two kinds of conformational forms of adenylate kinase (AK) in equilibrium in solution with different ANS-binding properties. Furthermore, the nature of AP(5)A inhibition suggests also that the native forms of AK for binding with different substrates pre-exist in the absence of substrates. In the present study, a kinetics approach was used to explore the native forms distinguished by ANS-binding properties and by the nature of AP(5)A inhibition. The results revealed that the native forms distinguished by ANS probe are two conformational sub-ensembles. Both sub-ensembles are active and consist of a series of forms, which pre-exist in solution and can bind with different substrates. The K(m) values of N(1) for AMP, ADP and MgATP are larger than that of N(2), indicating that the N(2) sub-ensemble is more specific for binding substrates. This is consistent with the previous observation that the activity of N(2) is about 1.8-fold of that of N(1).  相似文献   

11.
To elucidate whether the C-terminal region in human adenylate kinase participates in the interaction with the substrate (MgATP(2-) and/or AMP(2-)), hydrophobic residues (Val182, Val186, Cys187, Leu190, and Leu193) were substituted by site-directed mutagenesis and the steady-state kinetics of fifteen mutants were analyzed. A change in the hydrophobic residues in the C-terminal domain affects the affinity for substrates (K(m)), that is, not only for MgATP(2-) but also for AMP(2-), and the catalytic efficiency (k(cat)). The results obtained have led to the following conclusions: (i) Val182 may interact with both MgATP(2-) and AMP(2-) substrates, but to a greater extent with MgATP(2-), and play a role in catalysis. (ii) Val186 appears to play a functional role in catalysis by interacting with both MgATP(2-) and AMP(2-) to nearly the same extent. (iii) Cys187 appears to play a functional role in catalysis. (iv) Leu190 appears to interact with both MgATP(2-) and AMP(2-) substrates but to a greater extent with AMP(2-). (v) Leu193 appears to interact with both MgATP(2-) and AMP(2-) but to a greater extent with AMP(2-). The activity of all mutants decreased due to the change in substrate-affinity. The closer the residue is located to the C-terminal end, the more its mutation affects not only MgATP(2-) but also AMP(2-) substrate binding. The hydrophobic alterations disrupt hydrophobic interactions with substrates and that might destabilize the conformation of the active site. The more C-terminal part of the alpha-helix appears to interact with AMP, as if it has swung out and rotated to cover the adenine moieties. The C-terminal alpha-helix of human adenylate kinase appears to be essential for the interaction with adenine substrates by swinging out during catalysis.  相似文献   

12.
Adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) from the mantle muscle of the squid, Loligo pealeii, was purified over 170-fold to homogeneity as judged by polyacrylamide and starch gel electrophoresis. The tissue contains a single isozyme of adenylate kinase, the enzyme from cytoplasmic and mitochondrial compartments (90 and 10% of total activity, respectively) being identical in physical and kinetic properties. Molecular weight was found to be 27,000 +/- 400. The enzyme shows a pH optimum of 8.2 in the forward (APD utilizing) and 7.4 in the reverse direction. Michaelis constants for ADP, ATP, and AMP are 0.70, 0.13, and 0.15 mM, respectively, with optimal Mg2+:adenylate ratios being 1:2 for ADP and 1:1 for ATP. A comparison of mass action ratios with the equilibrium constant indicated that squid adenylate kinase is held out of equilibrium in resting, but not active, muscle. A search for metabolic modulators of adenylate kinase revealed that NADH (Ki of 0.1 mM) was the only modulator which exerted a significant effect within its in vivo concentration range. The data presented indicate that NADH inhibition is the factor maintaining adenylate kinase in a nonequilibrium state in resting muscle and that release of this inhibition can serve to integrate adenylate kinase into the known scheme of intermediary metabolism in this tissue. A sharp drop in NADH levels at the onset on muscular work co-ordinates that activation of aerobic metabolism in this tissue and allows adenylate kinase to return to equilibrium function. At equilibrium, the enzyme can function to ampligy the concentration of AMP, a potent activator and deinhibitor of key glycolytic and Krebs cycle enzymes. The effect of modulators of adenylate kinase in preventing denaturation by heat or proteolysis revealed that NADH and substrates induced conformational changes in the enzyme which rendered it less susceptible to denaturation. The conformation state induced by NADH differed from that induced by substrate.  相似文献   

13.
An iso-random Bi Bi mechanism has been proposed for adenylate kinase. In this mechanism, one of the enzyme forms can bind the substrates MgATP and AMP, whereas the other form can bind the products MgADP and ADP. In a catalytic cycle, the conformational changes of the free enzyme and the ternary complexes are the rate-limiting steps. The AP(5)A inhibition equations derived from this mechanism show theoretically that AP(5)A acts as a competitive inhibitor for the forward reaction and a mixed noncompetitive inhibitor for the backward reaction.  相似文献   

14.
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.  相似文献   

15.
In silico studies carried out by using a computer model of oxidative phosphorylation and anaerobic glycolysis in skeletal muscle demonstrated that deamination of AMP to IMP during heavy short term exercise and/or hypoxia lessens the acidification of myocytes. The concerted action of adenylate kinase and AMP deaminase, leading to a decrease in the total adenine nucleotide pool, constitutes an additional process consuming ADP and producing ATP. It diminishes the amount of ADP that must be converted to ATP by other processes in order to meet the rate of ADP production by ATPases (because the adenylate kinase + AMP deaminase system produces only 1 ATP per 2 ADPs used, ATP consumption is not matched by ATP production, and the reduction of the total adenine nucleotide pool occurs mostly at the cost of [ATP]). As a result, the rate of ADP consumption by other processes may be lowered. This effect concerns mostly ADP consumption by anaerobic glycolysis that is inhibited by AMP deamination-induced decrease in [ADP] and [AMP], and not oxidative phosphorylation, because during heavy exercise and/or hypoxia [ADP] is significantly greater than the Km value of this process for ADP. The resultant reduction of proton production by anaerobic glycolysis enables us to delay the termination of exercise because of fatigue and/or to diminish cell damage.  相似文献   

16.
NMR studies of the AMP-binding site and mechanism of adenylate kinase   总被引:3,自引:0,他引:3  
D C Fry  S A Kuby  A S Mildvan 《Biochemistry》1987,26(6):1645-1655
NMR has previously been used to determine the conformation of enzyme-bound MgATP and to locate the MgATP-binding site on adenylate kinase [Fry, D. C., Kuby, S. A., & Mildvan, A. S. (1985) Biochemistry 24, 4680-4694]. To determine the conformation and location of the other substrate, AMP, distances have been measured from Cr3+AMPPCP, a linear competitive inhibitor with respect to MgATP, to six protons and to the phosphorus atom of AMP on adenylate kinase, with the paramagnetic probe-T1 method. Time-dependent nuclear Overhauser effects (NOEs) have been used to measure five interproton distances on enzyme-bound AMP. These distances were used to determine the conformation of bound AMP in addition to its position with respect to metal-ATP. Enzyme-bound AMP exhibits a high anti-glycosyl torsional angle (chi = 110 +/- 10 degrees), a 3'-endo,2'-exo ribose pucker (delta = 105 +/- 10 degrees), and gauche-trans orientations about the C4'-C5' bond (gamma = 180 +/- 10 degrees) and the C5'-O5' bond (beta = 170 +/- 20 degrees). The distance from Cr3+ to the phosphorus of AMP is 5.9 +/- 0.3 A, indicating a reaction coordinate distance of approximately 3 A, which is consistent with an associative SN2 mechanism for the phosphoryl transfer. Ten intermolecular NOEs, from protons of the enzyme to those of AMP, were detected, indicating the proximity of at least three hydrophobic amino acids to bound AMP. These constraints, together with the conformation of AMP and the intersubstrate distances, were used to position AMP into the X-ray structure of adenylate kinase. The AMP binding site is found to be near (less than or equal to 4 A from) Leu-116, Arg-171, Val-173, Val-182, and Leu-190; all of these residues have been found to be invariant in muscle-type rabbit, calf, human, porcine [Kuby, S. A., Palmieri, R. H., Frischat, A., Fischer, A. H., Wu, L. H., Maland, L., & Manship, M. (1984) Biochemistry 23, 2393-2399], and chicken adenylate kinase [Kishi, F., Maruyama, M., Tanizawa, Y., & Nakazawa, A. (1986) J. Biol. Chem. 261, 2942-2945].  相似文献   

17.
Creatine kinase from skeletal muscle (EC 2.7.3.2) was inactivated by means of imidazolides of AMP, ADP, ATP. Rates of the inactivation of the enzyme's M- and M'-subunits differ 50-100 fold and decrease in the presence of ADP and ATP. Differential spectrum of the native and modified enzymes corresponds to the spectrum of N,O-diacetyltyrosine. Kinetic curves of hydroxylamine-dependent destruction of N,O-diacetyltyrosine and of alteration of differential spectrum of the modified and native enzymes essentially coincide. The enzyme's inactivation appears to be caused mainly by the formation of a bond between nucleotide imidazolides activated carboxyl group of the active centre and OH-group of Tyr residue arranged in the close proximity. The stoichiometry of acyltyrosine formation is evaluated as 2.1 +/- 0.2 mole per mole of the functional dimer. Along with formation of ester bond between amino acid residues, a covalent attachment of 0.03-0.06 mole of [14C]nucleotides per mole of enzyme is observed. As the data of acid hydrolysis show, Im-ATP and Im-AMP block epsilon-amino group of Lys and guanidine group of Arg, respectively. Reasons of the multiple modification of creatine kinase by affinity reagents are discussed. The results obtained and literature data are summarised in the hypothetical scheme of disposition of various amino acid residues in the active centre of creatine kinase.  相似文献   

18.
A method was developed for preparation of dansylated derivatives of adenine nucleotides characterized by fluorescence when being irradiated with UV-light. The involvement of dansylated ATP, ADP and AMP as substrate analogues in energy metabolism is demonstrated in the ATPase, hexokinase, pyruvate kinase and adenylate kinase reactions. The kinetics of the reactions is discussed.  相似文献   

19.
Adenylate kinase, the product of the adk locus in Escherichia coli K12, catalyzes the conversion of AMP and ATP to two molecules of ADP. The gene has been cloned by complementation of an adk temperature sensitive mutation. The DNA sequence of the complete coding region and of 5'- and 3'-untranslated regions were determined. The resulting protein sequence was found to contain several regions of high homology with cytosolic adenylate kinase of pig muscle (AK1), whose three-dimensional structure has been determined. The most significant of the amino acid exchanges is the replacement of histidine 36 with glutamine. This residue is believed to play a role in catalysis through metal ion binding. The codon usage pattern and the determination of adenylate kinase molecules per cell shows that the enzyme is one of the more abundant soluble proteins of the bacterial cells.  相似文献   

20.
The complete amino acid sequence of adenylate kinase from baker's yeast   总被引:7,自引:0,他引:7  
The complete amino acid sequence of cytosolic adenylate kinase (MgATP + AMP----MgADP + ADP) from baker's yeast has been determined. Tryptic and clostripaic cleavage of the protein yielded 27 and 10 fragments, respectively. They were sequenced with either a solid-phase sequencer or a gas-phase sequencer. Alignment of the clostripaic fragments was deduced from the sequence of peptides obtained by endoproteinase Lys-C and cyanogen bromide cleavages. The N-terminus is blocked by an acetyl group as shown by proton magnetic resonance. Carboxypeptidase A digestion of the whole protein showed that the C-terminal sequence is -Lys-Asn, in agreement with the sequence of peptides from tryptic, clostripaic and 2-iodosobenzoic acid cleavages. The enzyme is a monomer of 220 amino acids with Mr 24077. Comparison of the sequence of the cytosolic adenylate kinases from yeast and pig shows 25% identity with highly conserved segments in the putative active-site region of the enzyme. After position 111, however, there is an insertion of 32 residues in the yeast species, similar to the adenylate kinase and the GTP:AMP phosphotransferase from beef heart mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号