首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Release of dopamine and norepinephrine by hypoxia from PC-12 cells   总被引:10,自引:0,他引:10  
We examined the effects of hypoxia on the release of dopamine(DA) and norepinephrine (NE) from rat pheochromocytoma 12 (PC-12) cellsand assessed the involvement ofCa2+ and protein kinases instimulus-secretion coupling. Catecholamine release was monitored bymicrovoltammetry using a carbon fiber electrode as well as by HPLCcoupled with electrochemical detection (ECD). Microvoltammetricanalysis showed that hypoxia-induced catecholamine secretion(PO2 ofmedium ~40 mmHg) occurred within 1 min after the onset of thestimulus and reached a plateau between 10 and 15 min. HPLC-ECD analysisrevealed that, at any level of PO2, therelease of NE was greater than the release of DA. In contrast, inresponse to K+ (80 mM), DA releasewas ~11-fold greater than NE release. The magnitude ofhypoxia-induced NE and DA releases depended on the passage, source, andculture conditions of the PC-12 cells. Omission of extracellularCa2+ or addition of voltage-gatedCa2+ channel blockers attenuatedhypoxia-induced release of both DA and NE to a similarextent. Protein kinase inhibitors, staurosporine (200 nM) andbisindolylmaleimide I (2 µM), on the other hand, attenuatedhypoxia-induced NE release more than DA release. However, proteinkinase inhibitors had no significant effect onK+-induced NE and DA releases.These results demonstrate that hypoxia releases catecholamines fromPC-12 cells and that, for a given change inPO2, NErelease is greater than DA release. It is suggested that proteinkinases are involved in the enhanced release of NE during hypoxia.

  相似文献   

2.
The human renal Na-PO4cotransporter gene NaPi-3 was expressed in human embryonic kidneyHEK-293 cells, and the transport characteristics were measured in cellstransfected with a vector containing NaPi-3 or with the vector alone(sham transfected). The initial rate of32PO4influx had saturation kinetics for external Na andPO4 with K Na1/2 of 128 mM(PO4 = 0.1 mM) andK PO41/2of 0.084 mM (extracellular Na = 143 mM) in sham- and NaPi-3-transfectedcells expressing the transporter. Transfection had no effect on theNa-independent 32PO4influx, but transfection increased Na-dependent32PO4influxes 2.5- to 5-fold. Of the alkali cations, only Na significantly supported PO4 influx. Arsenateinhibited flux with an inhibition constant of 0.4 mM. The phosphatetransport in sham- and NaPi-3-transfected cells has nearly the sametemperature dependence in the absence and presence of extracellularNa. The Na-dependent phosphate flux decreased with pH insham-transfected cells but was pH independent in transfected cells. TheNa-dependent32PO4influx was inhibited byp-chloromercuriphenylsulfonate,phosphonoformate, phloretin, vanadate, and5-(N-methyl-N-isobutyl)-amiloridebut not by amiloride or other amiloride analogs. These functional characteristics are in general agreement with the known behavior ofNaPi-3 homologues in the renal tubule of other species and, thus,demonstrate the fidelity of this transfection system for the study ofthis protein. Commensurate with the increased functional expression,there was an increase in the amount of NaPi-3 protein by Westernanalysis.

  相似文献   

3.
K influx intoequine red blood cells (RBCs) was measured using86Rb as a tracer for K underconditions designed to mimic the changes in respiratory bloodparameters that occur in vivo during strenuous exercise. The effects onK influx of physiological changes in pH, cell volume,O2 tension(PO2),CO2 tension(PCO2), and bicarbonate and lactateconcentrations were defined. Physiological PO2 exerted a dominant controllinginfluence on the H+-stimulatedCl-dependent K influx, consistent with effects on the K-Clcotransporter; PO2 required forhalf-maximal activity was 37 ± 3 mmHg (4.9 kPa). AlthoughRBCs were swollen at low pH, results showed explicitly that the volumechange per se had little effect on K influx. Lactate had no effect onvolume- or H+-stimulated Kinfluxes, nor did bicarbonate or PCO2affect the magnitude of K influxes after these stimuli or aftertreatment with protein kinase/phosphatase inhibitors. These resultsrepresent the first detailed report ofO2 dependence ofH+-stimulated K-Cl cotransport inRBCs from any mammalian species. They emphasize the importance ofPO2 in control of RBC K-Clcotransport.

  相似文献   

4.
Separate entry pathways for phosphate and oxalate in rat brain microsomes   总被引:1,自引:0,他引:1  
ATP-dependent 45Ca uptake in rat brainmicrosomes was measured in intracellular-like media containingdifferent concentrations of PO4 and oxalate. In the absenceof divalent anions, there was a transient 45Caaccumulation, lasting only a few minutes. Addition of PO4did not change the initial accumulation but added a second stage that increased with PO4 concentration. Accumulation during thesecond stage was inhibited by the following anion transport inhibitors: niflumic acid (50 µM),4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS; 250 µM),and DIDS (3-5 µM); accumulation during the initial stage wasunaffected. Higher concentrations of DIDS (100 µM), however,inhibited the initial stage as well. Uptake was unaffected by 20 mM Na,an activator, or 1 mM arsenate, an inhibitor of Na-PO4 cotransport. An oxalate-supported 45Ca uptake was larger,less sensitive to DIDS, and enhanced by the catalytic subunit ofprotein kinase A (40 U/ml). Combinations of PO4 and oxalatehad activating and inhibitory effects that could be explained byPO4 inhibition of an oxalate-dependent pathway, but notvice versa. These results support the existence of separate transportpathways for oxalate and PO4 in brain endoplasmic reticulum.

  相似文献   

5.
It remainscontroversial whether lactate formation during progressive dynamicexercise from submaximal to maximal effort is due to muscle hypoxia. Tostudy this question, we used direct measures of arterial and femoralvenous lactate concentration, a thermodilution blood flow technique,phosphorus magnetic resonance spectroscopy (MRS), and myoglobin (Mb)saturation measured by 1H nuclearMRS in six trained subjects performing single-leg quadriceps exercise.We calculated net lactate efflux from the muscle and intracellularPO2 with subjects breathing room airand 12% O2. Data were obtained at50, 75, 90, and 100% of quadriceps maximalO2 consumption at each fraction ofinspired O2. Mb saturation wassignificantly lower in hypoxia than in normoxia [40 ± 3 vs. 49 ± 3% (SE)] throughout incremental exercise to maximalwork rate. With the assumption of aPO2 at which 50% of Mb-binding sitesare bound with O2 of 3.2 Torr,Mb-associated PO2 averaged 3.1 ± 0.3 and 2.3 ± 0.2 Torr in normoxia and hypoxia, respectively. Netblood lactate efflux was unrelated to intracellular PO2 across the range of incrementalexercise to maximum (r = 0.03 and 0.07 in normoxia and hypoxia, respectively) but linearly related toO2 consumption(r = 0.97 and 0.99 in normoxia andhypoxia, respectively) with a greater slope in 12%O2. Net lactate efflux was alsolinearly related to intracellular pH(r = 0.94 and 0.98 in normoxia andhypoxia, respectively). These data suggest that with increasing workrate, at a given fraction of inspiredO2, lactate efflux is unrelated tomuscle cytoplasmic PO2, yet theefflux is higher in hypoxia. Catecholamine values from comparablestudies are included and indicate that lactate efflux in hypoxia may bedue to systemic rather than intracellular hypoxia.

  相似文献   

6.
Hypoxia (95% N2-5%CO2) elicits an endothelium-independent relaxation(45-80%) in freshly dissected porcine coronary arteries. Pairedartery rings cultured at 37°C in sterile DMEM (pH ~7.4) for 24 h contracted normally to KCl or 1 µM U-46619. However, relaxation inresponse to hypoxia was sharply attenuated compared with control (fresharteries or those stored at 4°C for 24 h). Hypoxicvasorelaxation in organ cultured vessels was reduced at both high andlow stimulation, indicating that both Ca2+-independent andCa2+-dependent components are altered. In contrast,relaxation to G-kinase (sodium nitroprusside) or A-kinase (forskolinand isoproterenol) activation was not significantly affected by organculture. Additionally, there was no difference in relaxation afterwashout of the stimulus, indicating that the inhibition is specific toacute hypoxia-induced relaxation. Simultaneous force and intracellularcalcium concentration ([Ca2+]i) measurementsindicate the reduction in [Ca2+]i concomitantwith hypoxia at low stimulus levels in these tissue is abolished byculture. Our results indicate that organ culture at 37°C specificallyattenuates hypoxic relaxation in vascular smooth muscle by alteringdynamics of [Ca2+]i handling and decreasing aCa2+-independent component of relaxation. Thus organculture can be a novel tool for investigating the mechanisms ofhypoxia-induced vasodilation.

  相似文献   

7.
Reactive changes in free intracellularzinc cation concentration ([Zn2+]i) weremonitored, using the fluorescent probe Zinquin, in human lymphoma cells exposed to the DNA-damaging agent VP-16. Two-photon excitation microscopy showed that Zinquin-Zn2+ formscomplexes in cytoplasmic vesicles. [Zn2+]iincreased in both p53wt (wild type) and p53mut(mutant) cells after exposure to low drug doses. In p53mutcells noncompetent for DNA damage-induced apoptosis, elevated [Zn2+]i was maintained at higher drug doses,unlike competent p53wt cells that showed a collapse of thetransient before apoptosis. In p53wt cells, the[Zn2+]i rise paralleled an increase in p53and bax-to-bcl-2 ratio but preceded an increase in p21WAF1,active cell cycle arrest in G2, or nuclear fragmentation.Reducing [Zn2+]i, usingN,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, caused rapid apoptosis in both p53wt andp53mut cells, although cotreatment with VP-16 exacerbatedapoptosis only in p53wt cells. This may reflectchanged thresholds for proapoptotic caspase-3 activation incompetent cells. We conclude that the DNA damage-induced transient isp53-independent up to a damage threshold, beyond which competent cellsreduce [Zn2+]i before apoptosis.Early stress responses in p53wt cells take place in anenvironment of enhanced Zn2+ availability.

  相似文献   

8.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

9.
ObjectiveWe aimed to observe the change of mitochondrial function and structure as well as the cell function induced by hypoxia in mouse trophoblasts, and moreover, to validate the restoration of these changes after co-culture with bone marrow mesenchymal stem cells (hereinafter referred to as “MSCs”). Further, we explored the mechanism of MSCs attenuating the functional damage of trophoblasts caused by hypoxia.MethodsCells were divided into two groups, trophoblasts and MSCs+trophoblasts respectively, and the two groups of cells were incubated with normoxia or hypoxia. Chemiluminescence was used to assay the β-HCG and progesterone in cell culture supernatants quantitatively. Western blotting and PCR were applied to detect the expression of Mfn2, MMP-2, MMP-9 and integrin β1 in the two groups. The mitochondrial membrane potential of each group of cells was detected with JC-1 dye and the ATP content was measured by the phosphomolybdic acid colorimetric method. We utilized transmission electron microscopy for observing the ultrastructure of mitochondria in trophoblasts. Finally, we assessed the cell apoptosis with flow cytometry (FCM) and analyzed the expression of the apoptosis related genes—Bcl-2, Bax, Caspase3 and Caspase9 by western blotting.ResultsThe results showed that the Mfn2 expression was reduced after 4 h in hypoxia compared with that in normoxia, but increased in the co-culture group when compared with that in the separated-culture group (p<0.05). In addition, compared with the separated-culture group, theβ-HCG and progesterone levels in the co-culture group were significantly enhanced (p<0.05), and so were the expressions of MMP-2, MMP-9 and integrin β1 (p<0.05). Moreover, it exhibited significantly higher in ATP levels and intensified about the mitochondrial membrane potential in the co-culture group. TEM revealed disorders of the mitochondrial cristae and presented short rod-like structure and spheroids in hypoxia, however, in the co-culture group, the mitochondrial cristae had a relatively regular arrangement and the mitochondrial ultrastructure showed hyperfusion. The expression of Bax, Caspase3 and Caspase9 was decreased in the co-culture group when compared with that in trophoblast cells cultured alone (p<0.05), while the Bcl-2 levels and the Apoptosis Index (AI) were markedly increased in the co-culture group (p<0.05).ConclusionBone marrow mesenchymal stem cells can attenuate mitochondria damage and cell apoptosis induced by hypoxia; the mechanism could be upregulating the expression of Mfn2 in mouse trophoblasts and changing mitochondrial structure.  相似文献   

10.
Cell shrinkageis an early prerequisite in programmed cell death, and cytoplasmicK+ is a dominant cation that controls intracellular ionhomeostasis and cell volume. Blockade of K+ channelsinhibits apoptotic cell shrinkage and attenuates apoptosis. We examined whether apoptotic repressor with caspase recruitment domain (ARC), an antiapoptotic protein, inhibits cardiomyocyte apoptosis by reducing K+ efflux throughvoltage-gated K+ (Kv) channels. In heart-derived H9c2cells, whole cell Kv currents (IK(V)) wereisolated by using Ca2+-free extracellular (bath) solutionand including 5 mM ATP and 10 mM EGTA in the intracellular (pipette)solution. Extracellular application of 5 mM 4-aminopyridine (4-AP), ablocker of Kv channels, reversibly reduced IK(V)by 50-60% in H9c2 cells. The remaining currents during 4-APtreatment may be generated by K+ efflux through4-AP-insensitive K+ channels. Overexpression of ARC inheart-derived H9c2 cells significantly decreasedIK(V), whereas treatment with staurosporine, apotent apoptosis inducer, enhanced IK(V)in wild-type cells. The staurosporine-induced increase inIK(V) was significantly suppressed and thestaurosporine-mediated apoptosis was markedly inhibited incells overexpressing ARC compared with cells transfected with thecontrol neomycin vector. These results suggest that theantiapoptotic effect of ARC is, in part, due to inhibition of Kvchannels in cardiomyocytes.

  相似文献   

11.
We investigated theeffects of epidermal growth factor (EGF) on activeNa+ absorption by alveolarepithelium. Rat alveolar epithelial cells (AEC) were isolated andcultivated in serum-free medium on tissue culture-treated polycarbonatefilters. mRNA for rat epithelial Na+ channel (rENaC) -, -,and -subunits and Na+ pump1- and1-subunits were detected inday 4 monolayers by Northern analysisand were unchanged in abundance in day5 monolayers in the absence of EGF. Monolayerscultivated in the presence of EGF (20 ng/ml) for 24 h fromday 4 to day5 showed an increase in both1 and1Na+ pump subunit mRNA but noincrease in rENaC subunit mRNA. EGF-treated monolayers showed parallelincreases in Na+ pump1- and1-subunit protein by immunoblotrelative to untreated monolayers. Fixed AEC monolayers demonstratedpredominantly membrane-associated immunofluorescent labeling withanti-Na+ pump1- and1-subunit antibodies, withincreased intensity of cell labeling for both subunits seen at 24 hfollowing exposure to EGF. These changes inNa+ pump mRNA and protein precededa delayed (>12 h) increase in short-current circuit (measure ofactive transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases activeNa+ resorption across AECmonolayers primarily via direct effects onNa+ pump subunit mRNA expressionand protein synthesis, leading to increased numbers of functionalNa+ pumps in the basolateralmembranes.

  相似文献   

12.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

13.
The ventilatorysensitivity to CO2, in hyperoxia, is increased after an 8-hexposure to hypoxia. The purpose of the present study was to determinewhether this increase arises through an increase in peripheral orcentral chemosensitivity. Ten healthy volunteers each underwent 8-hexposures to 1) isocapnic hypoxia, with end-tidalPO2 (PETO2) = 55 Torr and end-tidal PCO2(PETCO2) = eucapnia; 2)poikilocapnic hypoxia, with PETO2 = 55 Torr and PETCO2 = uncontrolled;and 3) air-breathing control. The ventilatory response toCO2 was measured before and after each exposure with theuse of a multifrequency binary sequence with two levels of PETCO2: 1.5 and 10 Torr above the normalresting value. PETO2 was held at 250 Torr.The peripheral (Gp) and the central (Gc) sensitivities were calculatedby fitting the ventilatory data to a two-compartment model. There wereincreases in combined Gp + Gc (26%, P < 0.05),Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase inchemosensitivity to CO2 within the peripheral chemoreflex.

  相似文献   

14.
Histamine H3 activation depresses cardiac function in experimental sepsis   总被引:1,自引:0,他引:1  
In the heart,histamine (H3) receptors mayfunction as inhibitory presynaptic receptors that decrease adrenergicnorepinephrine release in conditions of enhanced sympathetic neuralactivity. We hypothesized thatH3-receptor blockade might improvecardiovascular function in sepsis. In a canine model ofEscherichia coli sepsis, we found thatH3-receptor blockade increasedcardiac output (3.6 to 5.3 l/min, P < 0.05), systemic blood pressure (mean 76 to 96 mmHg,P < 0.05), and left ventricularcontractility compared with pretreatment values. Plasma histamineconcentrations increased modestly in theH3-blocker-sepsis groupcompared with values obtained in a nonsepsis-time-control group.In an in vitro preparation, histamineH3 activation could be identifiedunder conditions of septic plasma. We conclude that activation ofH3 receptors may contribute tocardiovascular collapse in sepsis.

  相似文献   

15.
Values of skeletal muscle intracellularPO2 during conditions ranging fromrest to maximal metabolic rates have been difficult to quantify. Amethod for measurement of intracellular PO2 in isolated single skeletalmuscle fibers by using O2-dependent quenching of aphosphorescent-O2probe is described. Intact single skeletal muscle fibersfrom Xenopus laevis were dissectedfrom the lumbrical muscle and mounted in a glass chamber containingRinger solution at 20°C. The chamber was placed on the stage of aninverted microscope configured for epi-illumination. A solutioncontaining palladium-meso-tetra(4-carboxyphenyl) porphine bound to bovine serum albumin was injectedinto single fibers by micropipette pressure injection.Phosphorescence-decay curves (average of 10 rapid flashes) wererecorded every 7 s from single cells(n = 24) in which respiration had beeneliminated with NaCN, while the PO2of the Ringer solution surrounding the cell was varied from 0 to 159 Torr. For each measurement, the phosphorescence lifetime was calculatedat the varied extracellular PO2 byobtaining a best-fit estimate by using a monoexponential function. Thephosphorescence lifetime varied from 40 to 70 µs at an extracellularPO2 of 159 Torr to 650-700 µsat 0 Torr. The phosphorescent lifetimes for the variedPO2 were used to calculate, by usingthe Stern-Volmer relationship, the phosphorescence-quenching constant(100 Torr1 · s1),and the phosphorescence lifetime in azero-O2 environment (690 µs) forthe phosphor within the intracellular environment. This techniquedemonstrates a novel method for determining intracellular PO2 in isolated single skeletalmuscle fibers.  相似文献   

16.
Diurnal K+ and Anion Transport in Phaseolus Pulvinus   总被引:1,自引:0,他引:1  
Diurnal movement of Phaseolus leaf is caused by deformationof the laminar pulvinus located at the joint of the leaf bladeand the petiole. The plants were cultured in solutions withvarious ion compositions, and changes of K+, Na+, Ca2+, Mg2+,Cl, NO3– and P1 concentrations both in the upperand lower parts of the laminar pulvinus were measured. Culturein 10 mM KCl solution caused an increase in K+ and Clconcentrations both in the upper and lower parts without anysignificant change in the concentration of NO3; culturein 10 mM KNO3 solution caused an increase in K+ and NO3concentration without any significant change in the concentrationof Cl; and culture in 10 mM KH2PO4 solution caused anincrease in K+ and P1 concentrations without any significantchange in the concentrations of NO3- and Cl. K+ moved from the upper to lower parts or from the lower toupper parts diurnally in all plants cultured in any solutionmentioned above. The main inorganic anion that accompanied thisK+ movement was Cl in KCl solution, and NO3 inKNO3 solution. When the seedlings were cultured in distilledwater or in KH2PO4 solution, neither Cl NO3 norP1 accompanied this K+ movement. In these cases, mainly H+ and/ororganic anions are supposed to move in exchange for and/or incombination with K+ movement. (Received November 8, 1982; Accepted June 13, 1983)  相似文献   

17.
Ward, Michael E. Effect of inhibition of nitric oxidesynthesis on the diaphragmatic microvascular response to hypoxia. J. Appl. Physiol. 81(4):1633-1641, 1996.The purpose of this study was to determine theeffect of inhibition of nitric oxide (NO) release on the diaphragmaticmicrovascular responses to hypoxia. In -chloralose-anesthetizedmongrel dogs, the microcirculation of the vascularly isolated ex vivoleft hemidiaphragm was studied by intravital microscopy. The diaphragmwas pump perfused with blood diverted from the femoral artery through aseries of membrane oxygenators. The responses to supramaximalconcentrations of sodium nitroprusside, moderate hypoxia (phrenicvenous PO2 27 Torr), andsevere hypoxia (phrenic venous PO2 15 Torr) were recorded before and after an infusion ofNG-nitro-L-arginine(L-NNA; 6 × 104 M) into the phreniccirculation for 20 min. Under control conditions, diaphragmatic bloodflow was 12.4 ± 1.1 ml · min1 · 100 g1. Diaphragmatic bloodflows recorded during moderate and severe hypoxia were 15.6 ± 1.2 and 24.3 ± 1.5 ml · min1 · 100 g1, respectively(P < 0.05 for both compared withcontrol values). Treatment withL-NNA reduced diaphragmaticblood flow to 9.6 ± 0.8 ml · min1 · 100 g1 under control conditions(P < 0.05) and caused arteriolarvasoconstriction to a degree that was dependent on vessel size (i.e.,larger vessels constricted more than smaller vessels).L-NNA eliminated the increase inblood flow during moderate hypoxia and inhibited arteriolar dilation byan amount that was related to vessel size (i.e., dilation of largervessels was inhibited more than that of smaller vessels). Inhibition ofNO synthesis had no effect on the increase in diaphragmatic blood flow(23.6 ± 1.9 ml · min1 · 100 g1;P > 0.05 compared with that duringsevere hypoxia before treatment withL-NNA) or arteriolar diametersduring severe hypoxia. NO release plays a role in the diaphragmaticvascular response to hypoxia, but this role is limited to dilation oflarger arterioles during hypoxia of moderate severity.

  相似文献   

18.
In striatedmuscle the coupling of blood flow to changes in tissue metabolism ishypothesized to be dependent in part on release of vasodilatingmetabolic by-products generated when mitochondrial metabolism becomesO2 limited. Cytochrome oxidase,the terminal step in oxidative phosphorylation, is half-maximallysaturated at <1 mmHg PO2 inisolated mitochondria. However, blood flow is regulated at tissuePO2 of ~20 mmHg. If the affinity ofmitochondrial respiration for O2were higher in vivo than in vitro,O2 limitation of mitochondrialmetabolism near mean tissue levels could occur. In the present studythe PO2 at which mitochondrialmetabolism becomes inhibited (criticalPO2) was measured for cardiacmyocytes in suspension (1.1 ± 0.15 mmHg) and single cells (1.0 ± 0.22 and 1.25 ± 0.22 mmHg in cardiac myocytes and ratspinotrapezius cells, respectively). These measurements are consistentwith those from isolated mitochondria, indicating that vasodilatorsproduced when oxidative phosphorylation becomes inhibited may beimportant for regulating blood flow only in highly glycolytic musclesor under conditions of severe O2limitation.

  相似文献   

19.
We comparedreflex responses to static handgrip at 30% maximal voluntarycontraction (MVC) in 10 women (mean age 24.1 ± 1.7 yr) during twophases of their ovarian cycle: the menstrual phase (days 1-4) and the follicularphase (days10-12). Changes in muscle sympathetic nerve activity (MSNA; microneurography) in response tostatic exercise were greater during the menstrual compared withfollicular phase (phase effect P = 0.01). Levels of estrogen were less during the menstrual phase(75 ± 5.5 vs. 116 ± 9.6 pg/ml, days 1-4 vs.days 10-12;P = 0.002). Generated tension did not explain differences in MSNA responses (MVC: 29.3 ± 1.3 vs. 28.2 ± 1.5 kg, days 1-4 vs.days 10-12;P = 0.13). In a group of experiments with the use of 31P-NMRspectroscopy, no phase effect was observed forH+ andH2PO4 concentrations(n = 5). During an ischemicrhythmic handgrip paradigm (20% MVC), a phase effect was notobserved for MSNA or H+ orH2PO4 concentrations,suggesting that blood flow was necessary for the expression of thecycle-related effect. The present studies suggest that, during statichandgrip exercise, MSNA is increased during the menstrual compared withthe follicular phase of the ovarian cycle.

  相似文献   

20.
The effects of epidermal growth factor(EGF) on intracellular calcium ([Ca2+]i)responses to the muscarinic agonist carbachol were studied in a humansalivary cell line (HSY). Carbachol (104 M)-stimulated[Ca2+]i mobilization was inhibited by 40%after 48-h treatment with 5 × 1010 M EGF. EGF alsoreduced carbachol-induced [Ca2+]i inCa2+-free medium and Ca2+ influx followingrepletion of extracellular Ca2+. UnderCa2+-free conditions, thapsigargin, an inhibitor ofCa2+ uptake to internal stores, induced similar[Ca2+]i signals in control and EGF-treatedcells, indicating that internal Ca2+ stores were unaffectedby EGF; however, in cells exposed to thapsigargin, Ca2+influx following Ca2+ repletion was reduced by EGF.Muscarinic receptor density, assessed by binding of the muscarinicreceptor antagonistL-[benzilic-4,4'-3HCN]quinuclidinyl benzilate([3H]QNB), was decreased by 20% after EGF treatment.Inhibition of the carbachol response by EGF was not altered by phorbolester-induced downregulation of protein kinase C (PKC) but was enhancedupon PKC activation by a diacylglycerol analog. Phosphorylation of mitogen-activated protein kinase (MAP kinase) and inhibition of thecarbachol response by EGF were both blocked by the MAP kinase pathwayinhibitor PD-98059. The results suggest that EGF decreases carbachol-induced Ca2+ release from internal stores andalso exerts a direct inhibitory action on Ca2+ influx. Adecline in muscarinic receptor density may contribute to EGF inhibitionof carbachol responsiveness. The inhibitory effect of EGF is mediatedby the MAP kinase pathway and is potentiated by a distinct modulatorycascade involving activation of PKC. EGF may play a physiological rolein regulating muscarinic receptor-stimulated salivary secretion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号