首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic events linked to activation of surf clam (Spisula solidissima) oocytes include a transient increased Ca2+ influx and an acid release. The aim of the present work was to further elucidate the respective roles of these two ionic events and to clarify the possible role of protein kinase C in the sequence of events leading to oocyte activation. K+-enriched seawater, ammonium chloride, and the phorbol ester 12-O-tetradecanoyl-13-phorbol acetate (TPA), a protein kinase C activator, were tested for their ability to promote germinal vesicle breakdown (GVBD), an acid release, increased 45Ca2+ uptake, and a shift in the pattern of protein synthesis. Oocytes activated by addition of K+ ions release an amount of H+ similar to that induced by fertilization, with the same time course, show an increased, verapamil-sensitive, 45Ca2+ uptake that is proportional to the amount of added K+, and undergo a shift in their pattern of protein synthesis, which requires the presence of external Ca2+. Ammonium chloride, at concentrations causing a higher production of acid than that induced by K+ ions or fertilization, does not trigger GVBD nor any increased 45Ca2+ uptake or any detectable shift in the pattern of protein synthesis. Combined additions of ammonium chloride with subthreshold concentrations of K+ ions allow GVBD to occur, thus revealing a synergistic effect of ammonia and K+ ions. TPA slowly induces GVBD, an Na+-dependent acid release, and a shift in the pattern of protein synthesis, in the absence of increased 45Ca2+ uptake. Our results lead us to propose the following sequence of events for the activation of Spisula oocytes: an increased Ca2+ influx contributes to activate protein kinase C which causes a Na+-dependent acid release leading to a rise of pHi. This rise of pHi, although insufficient by itself, may set the pHi in a permissive range for activation to occur through the action of other protein kinase C-sensitive events leading to the production of meiosis-inducing proteins.  相似文献   

2.
Depolarization of PC-12 pheochromocytoma cells with K+ produces an immediate increase in catecholamine release. The stimulation of release is blocked by Co2+, removal of extracellular Ca2+ or by dihydropyridine drugs such as nitrendipine. Release is enhanced by other dihydropyridines such as BAY K8644. Release is accompanied by a voltage dependent uptake of 45Ca2+ which is also blocked by Co2+ or nitrendipine and enhanced by BAY K8644. The phorbol ester phorbol 12-myristate-13-acetate (TPA) in the range 10(-9)-10(-6) M produced little effect by itself but augmented the K+ evoked release of catecholamine. An analog of TPA which does not activate protein kinase C was ineffective. In contrast, TPA in the same concentration range blocked influx of 45Ca2+ induced by 70 mM K+ or 70 mM K+/BAY K8644. 45Ca2+ influx produced by A23187 was not blocked by TPA. The results suggest a system by which protein kinase C may regulate the output of transmitters from secretory cells.  相似文献   

3.
Receptor-mediated breakdown of PtdIns(4,5)P2 produces two cellular signals, Ins(1,4,5)P3, which can release intracellular Ca2+, and diacylglycerol, which activates a Ca2+- and phospholipid-dependent protein kinase (protein kinase C). This study assesses the significance of protein kinase C in relation to phenylephrine- and vasopressin-induced Ca2+ mobilization in hepatocytes. Phorbol ester (4 beta-phorbol-12-myristate-13-acetate), which can directly activate protein kinase C, had no effect either on Ca2+ efflux from the cell (measured with arsenazo III) or on Ca2+ influx (measured with Quin-2), processes which are inhibited and stimulated, respectively, by both phenylephrine and vasopressin. No evidence of synergism between phorbol ester pretreatment of hepatocytes and the Ca2+ ionophore (ionomycin)-mediated effects on the increase of cytosolic free Ca2+ and phosphorylase activation could be obtained. These findings suggest that protein kinase C is not obligatorily involved in the regulation of hepatocyte Ca2+ fluxes. Pretreatment of hepatocytes with phorbol ester (PMA) or 1-oleoyl-2-acetylglycerol totally inhibited the effects of phenylephrine in elevating the cytosolic free Ca2+; half-maximal inhibitory effects occurred at PMA and 1-oleoyl-2-acetylglycerol concentrations of 1 ng/ml and 12 micrograms/ml, respectively. In contrast, pretreatment with PMA had a much smaller effect on Ca2+ mobilization induced by vasopressin. These observations suggest that protein kinase C may be involved in "down-regulation" of the alpha 1-receptor in hepatocytes and may thus exert a negative influence on the Ca2+-signalling pathway.  相似文献   

4.
The addition of platelet-derived growth factor and fibroblast growth factor to quiescent cultures of Swiss 3T3 fibroblasts rapidly induced protein kinase C activation and Ca2+ mobilization and afterwards markedly increased c-myc mRNA levels. 1-Oleoyl-2-acetylglycerol, a membrane-permeable synthetic diacylglycerol, and 12-O-tetradecanoylphorbol 13-acetate, a tumor-promoting phorbol ester, stimulated protein kinase C activation without Ca2+ mobilization. Inversely, Ca2+ ionophores, A23187 and ionomycin, elicited Ca2+ mobilization without protein kinase C activation. Both protein kinase C-activating and Ca2+-mobilizing agents were able to increase c-myc mRNA levels in an additive manner. Prolonged treatment of the cells with phorbol 12,13-dibutyrate, another protein kinase C-activating phorbol ester, led to the down-regulation and complete disappearance of protein kinase C. In these cells, 1-oleoyl-2-acetylglycerol and 12-O-tetradecanoylphorbol 13-acetate did not increase c-myc mRNA levels, but platelet-derived growth factor, fibroblast growth factor, and the Ca2+ ionophores, all of which still induced Ca2+ mobilization, stimulated the increase of c-myc mRNA levels. These results strongly suggest that both protein kinase C and Ca2+ may be involved in platelet-derived growth factor- as well as fibroblast growth factor-induced expression of the c-myc oncogene in Swiss 3T3 cells.  相似文献   

5.
In this study we examined the effect of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the bumetanide-sensitive Na+/K+/Cl- transporter in quiescent BALB/c 3T3 cells. We have shown that exposure of quiescent BALB/c 3T3 cultures to phorbol ester did not inhibit the basal bumetanide-sensitive Rb+ influx or efflux. In fact, at high concentration (100 ng/ml), TPA slightly stimulated the bumetanide-sensitive Rb+ influx and efflux. However, when the quiescent cultures were stimulated by serum or by defined growth factors, the stimulated fraction of the bumetanide-sensitive Rb+ influx was drastically inhibited by exposure of the cells to the phorbol ester TPA. Based on the above findings, we propose that activation of protein kinase C by the phorbol ester TPA does not inhibit the Na+/K+/Cl- cotransport activity; however it does suppress only the growth-factors-stimulated fraction of the cotransport in quiescent BALB/c 3T3 cells. These data propose that activation of kinase C has a regulatory feedback effect on the stimulation of the Na+/K+/Cl- cotransport activity by growth factors.  相似文献   

6.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

7.
The depolarisation-induced influx of 45Ca2+ into anterior pituitary tissue and GH3 cells through 'L'-type, nimodipine-sensitive channels was investigated. In anterior pituitary prisms, phorbol esters, activators of protein kinase C, caused an enhancement of K(+)-induced 45Ca2+ influx. However, in the GH3 anterior pituitary cell line, phorbol esters inhibited K(+)-induced 45Ca2+ influx. The modulation by phorbol esters in both tissues was stereo-specific and time- and concentration-dependent. The diacylglycerol analogue, 1,2-dioctanoyl sn-glycerol was able to mimic the phorbol ester-induced enhancement of calcium influx into anterior pituitary pieces, but was ineffective in GH3 cells. 1,2-Dioctanoyl sn-glycerol may selectively activate an isoform of protein kinase C which is responsible for enhanced 'L'-type Ca(2+)-channel activity.  相似文献   

8.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

9.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

10.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

11.
In cloned osteoblast-like MC3T3-E1 cells, prostaglandin E2 (PGE2) stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in a dose-dependent manner, attaining a maximum at 0.5 microM. Dose of PGE2 above 0.5 microM caused less than maximal stimulation. While PGE2 stimulated the formation of inositol trisphosphate dose dependently in the range between 1 nM and 10 microM. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, which by itself had little effect on 45Ca2+ influx, significantly suppressed the 45Ca2+ influx induced by PGE2 in a dose-dependent manner between 1 nM and 1 microM. 4 alpha-Phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect in this capacity. Staurosporine, a PKC inhibitor, enhanced the PGE2-induced 45Ca2+ influx. On the other hand, dibutyryl cAMP had little effect on the 45Ca2+ influx induced by PGE2. Our data suggest that PGE2 regulates Ca2+ influx through self-induced activation of PKC. These results indicate that there is an autoregulatory mechanism in signal transduction by PGE2, and PGE2 modulates osteoblast functions through the interaction between Ca2+ influx and phosphoinositide hydrolysis in osteoblast-like cells.  相似文献   

12.
In this study we have investigated various components of the stimulus-secretion coupling process leading to aldosterone secretion from the calf adrenal glomerulosa cells as evoked by angiotensin II (AII) and potassium (K+). The roles of Ca2+, calmodulin and protein kinase C in the sustained phase rather than initiation of aldosterone secretion were of special interest. Our investigations revealed that the reduction of extracellular Ca2+ by EGTA or interruption of Ca2+ influx by nitrendipine at various time points after stimulation with either AII or K+ markedly compromised aldosterone secretion. Calmodulin inhibitors, calmidazolium and W-7 reduced aldosterone secretion profoundly. Agonists of protein kinase C, phorbol ester or diacylglycerol analogues failed to stimulate aldosterone secretion while the protein kinase C inhibitor, H-7, only partially inhibited aldosterone secretion at a concentration which completely inhibited protein kinase C activity. Calmodulin inhibitors produced significantly greater inhibition of aldosterone secretion than inhibitors of protein kinase C.  相似文献   

13.
Neurotransmitter release from rat brain synaptosomes was measured following pretreatment with various phorbol esters. Ca2+-dependent, evoked neurotransmitter release was increased by phorbol esters that were active in stimulating protein kinase C. Protein kinase C activation was demonstrated by increased incorporation of 32P into 87-kilodalton phosphoprotein, a specific substrate for that kinase. Inactive phorbol esters had no effect on neurotransmitter release or on the phosphorylation of 87-kilodalton phosphoprotein. The increased release was observed in either crude cortical synaptosomal fractions (P2) or purified cortical synaptosomal fractions. The enhancement was found for all neurotransmitters (norepinephrine, acetylcholine, gamma-aminobutyric acid, serotonin, dopamine, and aspartate), all brain regions (cerebral cortex, hippocampus, and corpus striatum), and all secretagogues (elevated extracellular K+ level, veratridine, or A23187) examined. It was also observed at all calcium concentrations present during stimulation of release. The phorbol ester enhancement of Ca2+-dependent release occurred whether or not calcium was present during pretreatment. These results indicate that stimulation of protein kinase C leads to an enhanced sensitivity of the stimulus-secretion coupling processes to calcium within the nerve terminal. The results support the possibility that presynaptic activation of protein kinase C modulates nerve terminal neurotransmitter release in the CNS.  相似文献   

14.
Using the intracellular Ca2+-specific indicator, Quin 2, it was demonstrated that an addition to platelet suspensions of the GTP-binding protein activator, sodium fluoride, stimulates the Ca2+ and Ba2+ influx from the incubation medium into the cytoplasm via receptor-operated Ca2+ channels (Ca-ROC). The fluoride-induced Ca2+ influx is blocked by the protein kinase C activator, phorbol myristate acetate as well as by the platelet adenylate cyclase activator, prostaglandin E1. A two-dimensional electrophoretic analysis of platelet phosphoproteins revealed that the phorbol ester enhances the phosphorylation of proteins with molecular masses of about 20 and 40 kDa. The experimental results suggest that the participation of the GTP-binding protein in the receptor coupling to Ca-ROC. The mechanism of the blocking effect of phorbol esters and prostaglandin E1 on Ca-ROC consists in an impaired coupling of these channels to the GTP-binding protein that activates them.  相似文献   

15.
16.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the handling of Ca2+ and insulin release were investigated in the clonal insulin-producing cell line RINm5F. The presence of the phorbol ester lowered the free cytoplasmic Ca2+ and suppressed the increase obtained by depolarization with high concentrations of K+. Despite the lowering in cytoplasmic Ca2+ by TPA, there was a concomitant stimulation of insulin release indicating that one feature of protein kinase C activation is to make the secretory system more sensitive to Ca2+. Furthermore, there was no interaction of TPA with the mechanisms responsible for inositol 1,4,5-tris(phosphate) induced Ca2+ release or Ca2+ uptake in permeabilized cells. Although TPA slightly depolarized the RINm5F cells there was no interference with K+-induced depolarization. It is suggested that an additional effect of protein kinase C activation in these cells, is to stimulate the extrusion of Ca2+ over the plasma membrane.  相似文献   

17.
Atrial natriuretic factor (ANF), a peptide hormone that regulates salt and water balance and blood pressure, is synthesized, stored, and secreted from mammalian myocytes. Stretching of atrial myocytes stimulates ANF secretion, but the cellular processes involved in linking mechanical distension to ANF release are unknown. We reported that phorbol esters, which mimic the action of diacylglycerol by acting directly on protein kinase C and the Ca2+ ionophore A23187, which introduces free Ca2+ into the cell, both increase basal ANF secretion in the isolated perfused rat heart. Phorbol ester also increased responsiveness to Ca2+ channel agonists, such as Bay k8644, and to agents that increase cAMP, such as forskolin and membrane-permeable cAMP analogs. In neonatal cultured rat atrial myocytes, protein kinase C activation by 12-O-tetradecanoylphorbol 13-acetate stimulated ANF secretion, whereas the release was unresponsive to changes in intracellular Ca2+. Endothelin, which stimulates phospholipase C mediated hydrolysis of phosphoinositides and activates protein kinase C, increased both basal and atrial stretch-induced ANF secretion from isolated perfused rat hearts. Similarly, phorbol ester enhanced atrial stretch-stimulated ANF secretion, while the increase in intracellular Ca2+ appeared to be negatively coupled to the stretch-induced ANF release. Finally, phorbol ester stimulated ANF release from the severely hypertrophied ventricles of hypertensive animals but not from normal rat myocardium. These results suggest that the protein kinase C activity may play an important role in the regulation of basal ANF secretion both from atria and ventricular cells, and that stretch of atrial myocytes appears to be positively modulated by phorbol esters.  相似文献   

18.
Phenylephrine is known to stimulate translocation of protein kinase C in rat pinealocytes (Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P., and Anderson, W. B. (1985) Nature 314, 359-361). In the present study, the receptor mediating this effect was found to belong to the alpha 1-adrenoceptor subclass. Activation of this receptor is also known to produce a sustained increase in [Ca2+]i by increasing net influx (Sugden, A. L., Sugden, D., and Klein, D. C. (1985) J. Biol. Chem. 261, 11608-11612), which points to the possible importance of Ca2+ influx in the subcellular redistribution (activation) of protein kinase C in intact cells. This possibility was investigated by reducing extracellular Ca2+ ((Ca2+]o) with EGTA or by inhibiting Ca2+ influx with inorganic Ca2+ blockers. These treatments reduced alpha 1-adrenoceptor-mediated translocation of protein kinase C. This suggested that elevation of Ca2+ influx alone triggers activation of protein kinase C. In support of this, it was found that treatments which elevate Ca2+ influx, including increased extracellular K+ and addition of the Ca2+ ionophore A23187, cause redistribution of protein kinase C. The effect of K+ was blocked by nifedipine and that of A23187 by EGTA, indicating that effects of these agents are Ca2+-dependent. The possible role of phospholipase C activation in these effects was examined by measuring the formation of [3H]diacylglycerol by cells labeled with [3H]arachidonic acid. Although [3H]diacylglycerol formation was easily detected in the presence or absence of an effective concentration of an inhibitor of diacylglycerol kinase, none of the agents which cause rapid translocation of protein kinase C were found to cause a rapid increase in the generation of [3H]diacylglycerol. These findings establish that an increase in Ca2+ influx is sufficient to trigger translocation of protein kinase C. In addition, we found that a very close correlation exists between translocation of protein kinase C by phenylephrine, K+, and A23187 and their ability to potentiate beta-adrenergic stimulation of cAMP and cGMP accumulation. This provides strong support to the proposal that translocation of protein kinase C is required for potentiation of beta-adrenergic stimulation of pinealocyte cAMP and cGMP accumulation.  相似文献   

19.
Superoxide production in alveolar macrophages is stimulated by agonists which act through Ca2+-mediated (concanavalin A) and/or protein kinase C (phorbol ester or diacylglycerol analogues) -mediated events. Simultaneous addition of saturating concentrations of concanavalin A and a protein kinase C activator (either phorbol 12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol) caused a supra-additive enhancement of the initial rate of O2-. production. This synergism closely correlated with the known time-course of Ca2+ mobilization induced by concanavalin A; however, it occurred under conditions in which protein kinase C activation is reportedly not Ca2+ dependent. Phorbol ester-induced O2-. production was partially inhibited by the Ca2+ ionophore, A23187. Although phorbol ester-stimulated O2-. production initially was enhanced by concanavalin A, the duration of this O2-. production was reduced in comparison to that induced by phorbol ester alone. These results suggest a dual role for intracellular Ca2+ in both stimulatory and inhibitory regulation of O2-. production.  相似文献   

20.
IP3-induced Ca2+ release is the primary mechanism that is responsible for acetylcholine (ACh)-induced Ca2+ oscillation. However, other mechanisms remain to explain intracellular Ca2+ elevation. We here report that ACh induces Ca2+ influx via T-type Ca2+ channel by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the ACh-induced Ca2+ influx facilitates the generation of Ca2+ oscillation in the mouse ovulated oocytes (oocytes(MII)). ACh increased Ca2+ current by 50+/-21%, and produced Ca2+ oscillation. However, the currents and Ca2+ peaks were reduced in Ca2+ -free extracellular medium. ACh failed to activate Ca2+ current and to produce Ca2+ oscillation in oocytes pretreated with KN-93, a CaMKII inhibitor. KN-92, an inactive analogue of KN93, and PKC modulators could not prevent the effect of ACh. These results show that ACh increases T-type Ca2+ current by activation of CaMKII, independent of the PKC pathway, in the mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号