首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcal exoproteins can be divided into two groups. One group comprises proteins bearing only a signal peptide, the other group requires an additional propeptide for secretion. The secretion signals of the propeptide-requiring lipase from Staphylococcus hyicus (Lip) have been frequently used to produce recombinant secretory proteins in the food-grade species Staphylococcus carnosus. However, it has been unclear whether recombinant proteins can be secreted using signal peptides of staphylococcal proteins without propeptide. The human growth hormone protein (hGH) was fused to various staphylococcal secretion signals of proteins without propeptide (Seb, SceA, and SceB) and of proteins requiring a propeptide (lipase, lysostaphin, and glycerol ester hydrolase). Secretory hGH was efficiently produced by S. carnosus after fusion with any propeptide-containing secretion signal, whereas precursor proteins were retained in the cells when only a signal peptide was used. Addition of the first six amino acid residues of mature SceA to the signal peptide did also not lead to secretion of hGH. It was concluded that the properties of the mature protein domains determine whether a propeptide is required for secretion or not. The Lip propeptide could be efficiently removed from hGH after introduction of an enterokinase cleavage site between the two protein domains.  相似文献   

2.
Secretion of a recombinant protein from the yeast Pichia pastoris requires the presence of a signal peptide at the amino terminus. Maintaining the full amino acid sequence of the signal peptide is thought to be important for proper signal processing and protein secretion. We show that at least for one protein, a synthetic human interferon, the presence of a Gateway recombination site within the signal peptide is fully compatible with high levels of protein secretion. The amino termini of the secreted interferon proteins cloned with Gateway and cloned with restriction enzymes and ligase are identical, and the proteins were highly active in biological assays. Compatibility with Gateway cloning simplifies construction of plasmids directing secretion of recombinant proteins from P. pastoris.  相似文献   

3.
Secreted proteins contain an N-terminal signal peptide to guide them through the secretion pathway. Once the protein is translocated, the signal peptide is removed by a signal peptidase, such as signal peptidase I. The signal peptide has been extensively studied and reviewed; however, the mature region has not been the focus of review. Here we cover the experimental evidence that highlights the important role of the mature region amino acid residues in both the efficiency and the ability of secreted proteins to be successfully exported via secretion pathways and cleaved by signal peptidase I.  相似文献   

4.
Most bacterial proteins that are destined to leave the cytoplasm are exported across the cell membrane to their sites of function. These proteins are generally exported via the classical secretion pathway, in which the signal peptide plays a central role. However, some bacterial proteins have been found in the extracellular milieu without any apparent signal peptide. As none of the classical secretion systems is involved in their secretion, this occurrence is termed non-classical protein secretion. The mechanism or mechanisms responsible for non-classical secretion are contentious. This review compiles evidence from the debate over whether the release of the non-classically secreted proteins is the result of cell lysis and discusses how these proteins are exported to the exterior of the cell.  相似文献   

5.
We investigated the stability of fusion proteins composed of the signal peptide of the heat-labile enterotoxin of Escherichia coli and three polypeptides: the bacterial cytoplasmic chloramphenicol acetyltransferase, the mouse dihydrofolate reductase, and human immune interferon. We demonstrate that these proteins are rapidly degraded as a result of being targeted to the secretion apparatus of E. coli, with the extent of degradation varying among the three fusion proteins. Four lines of experimental evidence are presented in support of this suggestion. First, the chimeric polypeptides containing a functional signal peptide were detected in low amounts in vivo. When a mutation was introduced in the signal peptide, resulting in lack of recognition by the secretion apparatus, the chimeric proteins accumulated at high levels in the cytoplasm of the cell. Second, both the wild-type and mutant polypeptides accumulated in a purified and reconstituted in vitro translation system from E. coli and were equally susceptible to digestion by an exogenous protease. Third, the chimeric polypeptides lacking the signal peptide accumulated in a stable form in vivo. Fourth, the precursors of the proteins containing a functional signal peptide accumulated in a secA ts mutant at the restrictive temperature when secretion was blocked, suggesting that degradation is tightly linked to the secretion apparatus.  相似文献   

6.
The HIV-1 gp120 gene with natural signal sequence expressed in eukaryotic expression systems showed extremely low levels of synthesis and secretion. Several expression systems have been used to improve the secretion levels of gp 120. In mammalian cells, the efficient expression of gp120 fused to t-PA signal peptide has been previously reported. Here, the effects of t-PA and EPO signal peptides were compared as secretion sequences for expression of gp120 in COS-7 cells. The EPO's signal peptide is used for the first time as leader sequence for secretion of foreign proteins. Our results indicated that higher amounts of secreted gp 120 were obtained when vectors containing EPO signal peptide were used.  相似文献   

7.
Aims: To test seven selected putative signal peptides from Lactobacillus plantarum WCFS1 in terms of their ability to drive secretion of two model proteins in Lact. plantarum, and to compare the functionality of these signal peptides with that of well‐known heterologous signal peptides (Usp45, M6). Methods and Results: Signal peptide functionality was assessed using a series of modular derivatives of the pSIP vectors for peptide pheromone‐controlled high‐level gene expression in lactobacilli. Several of the constructs with homologous signal peptides yielded similar or higher reporter protein activities than constructs with heterologous signal peptides. Two of the homologous signal peptides (Lp_0373 and Lp_0600) appeared as especially promising candidates for directing secretion, as they were among the best performing with both reporter proteins. Conclusions: We have identified homologous signal peptides for high‐level secretion of heterologous proteins in Lact. plantarum. With the model proteins, some of these performed better than commonly used heterologous signal peptides. Significance and Impact of the Study: The homologous signal peptides tested out, in this study, could be useful in food‐grade systems for secretion of interesting proteins in Lact. plantarum. The constructed modular secretion vectors are easily accessible for rapid signal peptide screening.  相似文献   

8.
The beta-lactamase signal peptide alone is not sufficient to direct secretion of chicken muscle triosephosphate isomerase, a normally cytoplasmic protein, into the periplasm of Escherichia coli. The signal peptide and at least the first 3 residues of the mature beta-lactamase are required before any secretion of the isomerase can be observed. At this point the level of secretion is very low, but the addition of further residues of the mature beta-lactamase enhances the secretion of the hybrid protein. The maximum level of secretion is achieved when 12 or more residues of the mature beta-lactamase intervene between the signal peptide and the isomerase. It is the proximity of an arginine residue at position 3 of the isomerase that is responsible for the blockade to secretion of these hybrid proteins (see Summers, R.G., Harris, C.R., and Knowles, J.R. (1989) J. Biol. Chem. 264, 20082-20088). With 12 residues of the mature beta-lactamase between the signal peptide and the isomerase, the offending arginine now lies at position 15 of the hybrid. The 14 residues that immediately follow the signal peptide therefore define a region of constrained properties that is critical to the secretability of proteins from E. coli.  相似文献   

9.
The baculovirus-silkworm expression system is widely used as a mass production system for recombinant secretory proteins. However, the final yields of some recombinant proteins are not sufficient for industrial use. In this study, we focused on the signal peptide as a key factor for improving the efficiency of protein production. Endoplasmic reticulum (ER) translocation of newly synthesized proteins is the first stage of the secretion pathway; therefore, the selection of an efficient signal peptide would lead to the efficient secretion of recombinant proteins. The Drosophila Bip and honeybee melittin signal peptides have often been used in this system, but to the best of our knowledge, there has been no study comparing secretion efficiency between exogenous and endogenous signal peptides. In this study we employed signal peptides from 30K Da and SP2 proteins as endogenous signals, and compared secretion efficiency with those of exogenous or synthetic origins. We have found that the endogenous secretory signal from the 30K Da protein is the most efficient for recombinant secretory protein production in the baculovirus-silkworm expression system.  相似文献   

10.

Background  

We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function.  相似文献   

11.
BACKGROUND: Although hundreds of different signal peptides have now been identified, few studies have examined the factors enabling signal peptides to augment secretion of mature proteins. Signal peptides, located at the N-terminus of nascent secreted proteins, characteristically have three domains: (1) a basic domain at the N-terminus, (2) a central hydrophobic core, and (3) a carboxy-terminal cleavage region. In this study, we investigated whether alterations in the basic and/or the hydrophobic domains of a commonly used signal peptide from interleukin-2 (IL-2) affected secretion of two proteins: placental alkaline phosphatase (AP) and endostatin. METHODS: A series of modifications in the basic and/or hydrophobic domains of the IL-2 signal peptide were made by polymerase chain reaction with endostatin or AP plasmids as templates. Transfection of wild-type or modified IL-2 signal peptides fused in-frame with endostatin or AP were done with Superfect in vitro or by the hydrodynamic method in vivo. RESULTS: Increasing both the basicity and hydrophobicity of the signal peptide augmented the secretion of AP and endostatin by approximately 2.5- and 3.5-fold, respectively, from MDA-MB-435 cells in vitro. Over a range of DNA concentrations and times, the most effective IL-2 signal peptide increased AP levels in the medium compared to the wild-type IL-2 signal peptide. Comparable results from these modified IL-2 signal peptides were found to increase AP levels in the medium from bovine aortic endothelial cells. Moreover, the combined changes in basic and hydrophobic domains of the IL-2 signal peptide augmented serum levels of endostatin and placental AP by 3-fold when the optimal plasmid constructs were injected in vivo. CONCLUSIONS: Modification of the IL-2 signal peptide augments protein secretion both in vitro and in vivo. As a result, optimizing the signal peptide should be considered for increasing the therapeutic levels of secreted proteins.  相似文献   

12.
Brevibacillus choshinensis has previously been shown to be a useful strain for the secretion of heterologous proteins via the Sec secretory pathway. This pathway involves the secretion of proteins prior to folding, whereas the alternative TAT (twin-arginine translocation) pathway enables pre-folded proteins to be secreted. We have modified the signal peptide of the Brevibacillus expression vector pNCMO2 to accommodate a Sec avoidance signal as well as the twin arginines required for secretion via the TAT system. Use of this modified signal peptide with the phosphotriesterase OpdA enabled B. choshinensis transformants to express and secrete the enzyme in an active and substantially pure form. The system was also used successfully to secrete two cytoplasmic proteins, the phosphotriesterase HocA from Pseudomonas monteilii and the phenylcarbamate-degrading enzyme, PCD, from Arthrobacter oxydans. The inhibitors carbonyl cyanide m-chlorophenyl hydrazine and sodium azide were used to confirm that secretion was occurring via the TAT secretion pathway. The modified B. choshinensis system we have developed may have general utility in secreting a wide range of heterologous proteins in active and conveniently processed form.  相似文献   

13.
非经典的蛋白质分泌途径   总被引:1,自引:0,他引:1  
蛋白质分泌是细胞间进行信息传递的重要方式之一。一般的分泌蛋白在其N端都具有信号肽序列,可以通过经典的内质网-高尔基体途径进行运输,并最终分泌到细胞外。近来发现细胞内存在另一类分泌蛋白,它们能够分泌到细胞外发挥功能,但却没有典型的信号肽序列,被称为非经典分泌蛋白。越来越多的证据表明,这类蛋白质的分泌有其独特的机制。本综述了这类蛋白质的各种分泌机制及可能的生理意义。  相似文献   

14.
In this study, a naturally unsecretory intrinsically disordered domain of nucleoskeletal-like protein (Nsp) was attempted to be secreted with different types of secretion signals in Bacillus subtilis. The results showed that Nsp can be secreted efficiently by all selected Sec-type signal peptides. Nsp was successfully exported when fused to Tat-type signal peptides but less efficient than Sec-type. The fusion protein with the non-classical extracellular proteins can be detected in the cell and extracellular milieu. This study further demonstrated that the mature protein plays an important role in protein secretion. Moreover, these results indicated that Nsp could be a useful tool to understand the individual roles of mature proteins and signal peptide in protein secretion, to evaluate the effect of conformation of mature proteins on their export pathway when coupled with Tat-type signal peptide, and to seek the signal of non-classical secretory proteins.  相似文献   

15.
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.  相似文献   

16.
A hidden Markov model (HMM) has been utilized to predict and generate artificial secretory signal peptide sequences. The strength of signal peptides of proteins from different subcellular locations via Lactococcus lactis bacteria correlated with their HMM bit scores in the model. The results show that the HMM bit score +12 are determined as the threshold for discriminating secreteory signal sequences from the others. The model is used to generate artificial signal peptides with different bit scores for secretory proteins. The signal peptide with the maximum bit score strongly directs proteins secretion.  相似文献   

17.
Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction.  相似文献   

18.
Cartilage oligomeric matrix protein (COMP) is a secreted glycoprotein found in the extracellular matrices of skeletal tissues. Mutations associated with two human skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia, disturb COMP secretion leading to intracellular accumulation of mutant COMP, especially in chondrocytes. Here we show that the manifestation of this secretory defect is dramatically influenced by the signal peptide that targets COMP for secretion. The comparison of wild type and mutant COMP secretion directed by the COMP or BM40 signal peptide in HEK-293 cells and rat chondrosarcoma cells revealed that the BM40 signal peptide substantially enhances secretion of mutant COMP that accumulates in endoplasmic reticulum-like structures when targeted by its own signal peptide. Additionally, we demonstrate that mutant COMP forms mixed pentamers with wild type COMP. Our findings suggest that the secretory defect in pseudoachondroplasia and multiple epiphyseal dysplasia is not specific for chondrocytes, nor does it require interaction of mutant COMP with other matrix proteins prior to transport from the cell. They also imply a previously unappreciated role for the signal peptide in the regulation of protein secretion beyond targeting to the endoplasmic reticulum.  相似文献   

19.
Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.  相似文献   

20.

Background  

The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database , a repository of experimentally determined and computationally predicted signal peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号