首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PChP) is a periplasmic enzyme produced simultaneously with the hemolytic phospholipase C (PLc-H) when the bacteria are grown in the presence of choline, betaine, dimethylglycine or carnitine. Molecular analysis of the P. aeruginosa mutant JUF8-00, after Tn5-751 mutagenesis, revealed that the PA5292 gene in the P. aeruginosa PAO1 genome was responsible for the synthesis of PChP. The enzyme expressed in E. coli, rPChP-Ec, purified by a chitin-binding column (IMPACT-CN system, New England BioLabs) was homogeneous after SDS-PAGE analysis. PChP was also expressed in P. aeruginosa PAO1-LAC, rPChP-Pa. Both recombinant enzymes exhibited a molecular mass of approximately 40 kDa, as expected for the size of the PA5292 gene, and catalyzed the hydrolysis of phosphorylcholine, phosphorylethanolamine, and p-nitrophenylphosphate. The saturation curve of rPChP-Ec and rPChP-Pa by phosphorylcholine revealed that these recombinant enzymes, like the purified native PChP, also contained the high- and low-affinity sites for phosphorylcholine and that the enzyme activity was inhibited by high substrate concentration.  相似文献   

2.
In Pseudomonas aeruginosa and Rhizobium meliloti several choline derivatives, utilized as the sole carbon and nitrogen source, increase acid phosphatase activity. The enzyme activity of both bacteria could be released into the surrounding medium by EDTA-lysozyme treatment. The R. meliloti acid phosphatase activity of crude periplasmic extracts measured with p-nitrophenylphosphate was not inhibited by the presence of 5 mM choline, betaine, trimethylammonium or phosphorylcholine. The activity could not be detected using phosphorylethanolamine or phosphorylcholine as substrates. Among several phosphoesters tested only pyridoxal-5-phosphate was hydrolyzed at a considerable rate. In 7.5% polyacrylamide slab gel electrophoresis (non-denaturing conditions) of crude extracts obtained from bacteria grown in the presence of serine, glutamate, aspartate or dimethylglycine a phosphatase activity with identical mobility could be detected when alpha-naphthylphosphate or pyridoxal-5-phosphate were used as substrates. In conclusion, although the coline metabolites are capable of increasing acid phosphatase activities in R. meliloti and in P. aeruginosa, there are two different enzymes involved, apparently in different metabolisms.Abbreviations p-NPP p-nitrophenyl phosphate - PLP pyridoxal-5-phosphate - PMP pyridoxamine-5-phosphate Recipient of a Fellowship from the CONICORMember of the SAPIU-CONICETCareer Member of the CONICET  相似文献   

3.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [ \textZn 2+ \textL 2 - 1 \textL 20 ( \textH 2 \textO ) 2 ] \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] complex.  相似文献   

4.
Effect of extraneous zinc on calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
The effect of extraneous zinc on calf intestinal alkaline phosphatase was studied for quick reversible binding and slow irreversible binding of zinc ions at various concentrations. Under the conditions of slow binding of zinc to CIP increasing Zn2+ (less than 1.0 mM, nM/nE 1.0 × 106) inhibited enzymatic activity, and further increasing Zn2+ resulted in an increase of activity. For quick reversible binding of Zn2+, the effect on CIP activity changed at lower concentrations of substrate, indicating a complex cooperativity between Zn2+ and pNPP. Both protein intrinsic emission fluorescence and ANS-bound protein fluorescence, as well as circular dichroism spectra have shown that the binding of zinc ions changed the enzyme conformation, which was the reason for the changes in enzyme activity induced by extraneous zinc.  相似文献   

5.
The presence of low choline or betaine concentrations in a culture medium containing succinate, NH4Cl, and inorganic phosphate (Pi) as the carbon, nitrogen, and phosphate sources, respectively, permits the growth ofPseudomonas aeruginosa in a hyperosmolar medium. Dimethylglycine, acetylcholine, and phosphorylcholine were less effective as osmoprotectants than choline or betaine. Other alkylammonium compounds tested were virtually ineffective in this capacity. Bacterial growth was also observed in a hyperosmolar medium when choline was the sole carbon and nitrogen source. Choline could act as an osmoprotectant under all the conditions tested. However, the production of cholinesterase (ChE), acid phosphatase (Ac. Pase) and phospholipase C (PLC) took place only when choline was the carbon and nitrogen source. This fact confirms that the synthesis of PLC may occur even in the presence of a high Pi concentration in the medium. Inasmuch as in a high-Pi medium the synthesis of PLC and Ac. Pase (phosphorylcholine phosphatase) is dependent only on choline metabolism, it is postulated that both enzymes are involved in a set of reactions coordinated to produce the breakdown of the membrane phospholipids of the host cell in a hyperosmotic medium.  相似文献   

6.
The protein tyrosine phosphatase (PTPase) plays an important role in insect immune system. Our group has purified a type of acid phosphatase that could specifically dephosphorylate trans-Golgi p230 in vitro. In order to study this phosphatase further, we have identified and cloned the phosphatase gene from a locust specific Metarhizium anisopliae Strain CQMa102. The CQMa102 phosphatase was expressed in Pichia pastoris to verify its protease activity. The molecular weight (MW) and the isoelectric point (pI) of the phosphatase were about 85 kDa and 6.15, respectively. Substrate specificity evaluation showed that the purified enzyme exhibited high activity on O-phospho-L-tyrosine. At its optimal pH of 6.5 and optimum temperature of 70 °C, the protein showed the highest activity respectively. It can be activated by Ca2+, Mg2+, Mn2+, Ba2+, Co2+ and phosphate analogs, but inhibited by Zn2+, Cu2+, fluoride, dithiothreitol, β-mercaptoethanol and N-ethylmaleimide.  相似文献   

7.
A low molecular weight acid phosphatase was purified to homogeneity from chicken heart with a specific activity of 42 U/mg and a recovery of about 1%. Nearly 800 fold purification was achieved. The molecular weight was estimated to be 18 kDa by SDS-polyacrylamide gel electrophoresis. Para-nitrophenyl phosphate, phenyl phosphate and flavin mononucleotide were efficiently hydrolysed by the enzyme and found to be good substrates. Fluoride and tartrate had no inhibitory effect while phosphate, vanadate and molybdate strongly inhibited the enzyme. The acid phosphatase was stimulated in the presence of glycerol, ethylene glycol, methanol, ethanol and acetone, which reflected the phosphotransferase activity. When phosphate acceptors such as ethylene glycol concentrations were increased, the ratio of phosphate transfer to hydrolysis was also increased, demonstrating the presence of a transphosphorylation reaction where an acceptor can compete with water in the rate limiting step involving hydrolysis of a covalent phospho enzyme intermediate. Partition experiments carried out with two substrates, para-nitrophenyl phosphate and phenyl phosphate, revealed a constant product ratio of 1.7 for phosphotransfer to ethylene glycol versus hydrolysis, strongly supporting the existence of common covalent phospho enzyme intermediate. A constant ratio of K cat/K m, 4.3×104, found at different ethylene glycol concentrations, also supported the idea that the rate limiting step was the hydrolysis of the phospho enzyme intermediate.  相似文献   

8.
In this paper, specific PHO13 alkaline phosphatase from Saccharomyces cerevisiae was demonstrated to possess phosphoprotein phosphatase activity on the phosphoseryl proteins histone II-A and casein. The enzyme is a monomeric protein with molecular mass of 60 kDa and hydrolyzes p-nitrophenyl phosphate with maximal activity at pH 8.2 with strong dependence on Mg2+ ions and an apparent Km of 3.6×10−5 M. No other substrates tested except phosphorylated histone II-A and casein were hydrolyzed at any significant rate. These data suggest that the physiological role of the p-nitrophenyl phosphate-specific phosphatase may involve participation in reversible protein phosphorylation.  相似文献   

9.
Activity of extracellular phosphatases (phosphomonoesterases) was measured in sandy streambed sediments of the Breitenbach, a small unpolluted upland stream in Central Germany. Fluorigenic 4-methylumbelliferyl phosphate served as a model substrate. Experiments were conducted using sediment cores in a laboratory simulation of diffuse groundwater discharge through the stream bed, a natural process occurring in the Breitenbach as well as many other streams.Streambed sediments contained high levels of particulate phosphorus, but concentrations of dissolved phosphorus in the interstitial water were 3 to 4 orders of magnitude lower. These interstitial concentrations were similar to those in the stream and groundwater. Extracellular phosphatase activity was high in the streambed sediments. These enzymes probably contribute significantly to the flux of phosphorus in sediment by hydrolyzing phosphomonoesters, making free phosphate available to the sediment microorganisms.Factors influencing the kinetic parameters V max (maximum activity) and apparent K m (enzyme affinity) of phosphatase were discharge rates of water through the sediment, water quality (ground- or stream water), and substrate (phosphomonoesters) as well as dissolved ortho-phosphate concentrations. Enzymes are supposed to be effective at limiting substrate concentrations, where, in this study, changes in discharge rates had little influence on rates of hydrolysis. Higher V max and lower K m values were found during percolation of groundwater through the sediment cores, compared with stream water. This indicates that rates of hydrolysis were higher with groundwater, both at substrate limitation and at substrate saturation. This was probably a consequence of the lower levels of dissolved ortho-phosphate in the groundwater.  相似文献   

10.
CTP:cholinephosphate cytidylyltransferase (EC 2.7.7.15) was purified from pea (Pisum sativum) stems. The purification involved ammonium sulphate fractionation, ion exchange chromatography, removal of proteases with α2-macroglobulin and gel filtration. The purified enzyme had Km values for phosphorylcholine and CTP of 2.1 mM and 0.55 mM respectively. It was found to have a pH optimum of 7.5, a requirement for Mg2+ and an Mr of 56000. It could not utilize phosphorylethanolamine and its activity was not stimulated by added phospholipids.  相似文献   

11.
Choline, acetylcholine and betaine used as the sole carbon, nitrogen or carbon and nitrogen source increase cholinesterase activity in addition to phosphorylcholine phosphatase and phospholipase C activities in Pseudomonas aeruginosa. The cholinesterase activity catalyses the hydrolysis of acetylthiocholine (Km approx. 0.13 mM) and propionylthiocholine (Km approx. 0.26 mM), but not butyrylthiocholine, which is a pure competitive inhibitor (Ki 0.05 mM). Increasing choline concentrations in the assay mixture decreased the affinity of cholinesterase for acetylthiocholine, but in all cases prevented inhibition raised by high substrate concentrations. Considering the properties of these enzymes, and the fact that in the corneal epithelium there exists a high acetylcholine concentration and that Pseudomonas aeruginosa produces corneal infection, it is proposed that these enzymes acting coordinately might contribute to the breakdown of the corneal epithelial membrane.  相似文献   

12.
13.
Summary Deficiency of inorganic phosphate caused the hyper production of invertase and the derepression of acid phosphatase in a continuous culture ofSaccharomyces carlsbergensis. The specific invertase activity was 40,000 enzyme units per g dry cell weight at a dilution rate lower than 0.05 h–1 with a synthetic glucose medium of which the molecular ratio of KH2PO4 to glucose was less than 0.006. This activity is eight fold higher than in a batch growth and 1.5 fold as much as the highest enzyme activity observed so far in a glucose-limited continuous culture.For the hyper production of invertase, it is necessary to culture the yeast continuously by keeping the Nyholm's conservative inorganic phosphate concentration at less than 0.2 m mole per g dry weight cell. The derepression of acid phosphatase brought about by phosphate deficiency, was similar in both batch and continuous cultures.Nomenclature D dilution rate of continuous culture (h–1) - Ei invertase concentration in culture (enzyme unit l–1) - Ep acid phosphatase concentration in culture (enzyme unit l–1) - P inorganic phosphate concentration in culture (mM) - S glucose concentration in culture (mM) - X cell concentration in culture (g dry weight cell l–1) Greek Letter specific rate of growth (h–1) Suffix f feed - 0 initial value  相似文献   

14.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   

15.
A new form of alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) has been identified in the yeast Saccharomyces cerevisiae. Utilizing either synthetic or natural substrates, the enzyme exhibited a broad pH activity curve with maximum activity between 8.5 and 9.0. The enzyme was nonspecific with respect to substrate, attacking a variety of compounds containing phosphomonoester linkages, but has no detectable activity against polyphosphate, pyrophosphate or phosphodiester linkages. The enzyme exhibited an apparent Km of 0.25 mM with respect to p-nitrophenyl phosphate, 0.38 mM with respect to α-naphthyl phosphate, and 1.0 mM with respect to 5′ AMP. The enzyme is regulated in a constitutive manner and its activity does not increase during phosphate starvation or sporulation, as does the repressible alkaline phosphatase. The enzyme is tightly bound to a particulate fraction of the cell, tentatively identified as the tonoplast membrane. It is not solubilized by treatment with high concentrations of NaCl, KH2PO4 or chaotropic agents. Triton X-100 (0.1%) solubilizes 12% of the particulate activity. This enzyme is differentiated from the other alkaline phosphatases found in yeast by its chromatographic elution from DEAE-cellulose, kinetic parameters, heat stability and pH stability, as well as its particulate nature. This particulate alkaline phosphatase was found in every strain examined. It has a significantly lower specific activity in the phoH mutant and a higher activity in the acid phosphatase constitutive mutant A137.  相似文献   

16.
The increase of cholinesterase (ChE), acid phosphatase (Ac.Pase), and phospholipase C (PLC) activities byPseudomonas aeruginosa was associated with the choline consumption in growth media of varied composition (high or low Pi concentrations, presence or absence of ammonium ion, amino acids, polyamines, peptone, or tricarboxylic acid cycle intermediates). The highest production of the three enzymes occurred in the late stationary growth phase. The simultaneous presence of alkaline phosphatase (Alk.Pase) and the above enzymes was noted when the bacteria were grown in low Pi medium plus choline, in the absence of a preferred carbon source. The importance of choline in the production of ChE, Ac.Pase, and PLC was observed in either clinical isolates or collection strains ofP. aeruginosa. These enzymes catalyze the hydrolysis of acetylcholine, phosphorylcholine, and phosphatidylcholine. Through their action the bacteria may break down various compounds (e.g., acetylcholine, from the corneal epithelium; lung surfactant dipalmitoylphosphatidylcholine; phosphorylcholine, a product of the PLC action) or cell membranes through the coordinated action of PLC and Ac.Pase or Alk.Pase. The final consequence of the action of these enzymes is an increase of the free choline concentration. Extrapolated to an in vivo situation, if the stationary growth phase resembles the conditions thatP. aeruginosa encounters in its natural environments, then it is possible to include choline among the factors promoting the pathogenicity of this bacterium.  相似文献   

17.
Summary Anabaena flos-aquae was grown in chemostats with phosphate-limiting growth and dilution rate of 0.015–0.03 h-1. The yields of cells were dependent on dilution rate and a two-fold increase obtained by growth in the presence of 15 mM KNO3. Alkaline phosphatase activity varied 20-fold, lowest activity with excess phosphate light-limited cells and the highest activity with cells grown in the presence of 15 mM KNO3. There was no correlation between hot water soluble phosphate of cells and alkaline phosphatase activity.  相似文献   

18.
The hydrolysis of ascorbate mono-, tri- and polyphosphates by trout intestinal alkaline phosphatase was examined. Km values were established as 1.19, 4.1 and 3.7 mM, respectively. The enzyme catalyzed ascorbate triphosphate hydrolysis with 60% efficiency of that for ascorbate monophosphate. With the Km value of 1.19 mM for ascorbate monophosphate the trout enzyme exhibits similar affinity with this substrate as with p-nitrophenyl phosphate (1.00–1.67 mM). Two Km values for micro- and millimolar ranges of ascorbate monophosphate concentrations ranges were calculated as: 27.9 μM and 1.19 mM, respectively. Specific intestinal alkaline phosphatase inhibitor L-phenylalanine (100 mM), inhibited reaction rate by 20% in 10 min. We conclude that alkaline phosphatase, which is in a great abundance in the trout intestine, serves as ascorbate esters hydrolase, thus releasing active ascorbic acid into circulation.  相似文献   

19.
Alkaline phosphatase, an enzyme secreted byBacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth ofB. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2HPO4 at a concentration of 0.01 % diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular forms of phosphatase varied depending on its cellular localization and growth phase.  相似文献   

20.
Phosphatase activities were measured in preparations of vacuoles isolated from storage roots of red beet (Beta vulgaris L.). The vacuoles possessed both acid phosphatase and ATPase activities which could be distinguished by their susceptibility to inhibition by low concentrations of ammonium molybdate [(NH4)6Mo7O24·4H2O]. The acid phosphatase was completely inhibited by 100 M ammonium molybdate but the ATPase was unaffected. The acid phosphatase was a soluble enzyme which hydrolysed a large number of phosphate esters and had a pH optimum of 5.5. In contrast, the ATPase was partially membrane-bound, had a pH optimum of 8.0 and hydrolysed ATP preferentially, although it was also active agianst PPi, GTP and GDP. At pH 8.0 both the ATPase and PPase activities were Mg2+-dependent and were further stimulated by KCl. The ATPase and PPase activities at pH 8.0 may be different enzymes. The recovery and purification of the ATPase during vacuole isolation were determined. The results indicate that the Mg2+-dependent, KCl-stimulated ATPase activity is not exclusively associated with vacuoles.Abbreviations BSA bovine serum albumen - MES 2-(N-Morpholino)ethanesulphonic acid - MOPS 3-(N-Morpholino)propanesulphonic acid - Na2EDTA ethylenediaminetetra-acetic acid, disodium salt - Pi inorganic phosphate - PPi inorganic pyrophosphate - PPase inorganic pyrophosphatase - TCA trichloroacetic acid - TES N-tris(hydroxymethyl)methyl-2-amino-ethanesulphonic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号