首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of ATP, ADP and AMP, the activity of phosphatases, and the ability for oxidative phosphorylation were studied in roots of pea (Pisum sativum) plants grown in media salinized either with NaCl or Na2SO4. In response to salinity, the ATP level in the roots decreased, whereas the ADP level increased slightly. As a result, the ADP:ATP ratio in the tissue increased with increasing salinity in the growth medium. The AMP level in the tissue was not affected by salinity.  相似文献   

2.
The growth and nodulation ofTrifolium alexandrinum were compared at six levels (0 - 1.2 % NaCl) of salinity. Dry mass of shoots and roots, 14 and 20 weeks after the commencement of salinity treatment, increased at low levels of salinity (0.1 - 0.2 % NaCl) but decreased with higher NaCl concentrations (0.4 - 1.2 %). Nodulation occurred at NaCl concentrations up to 0.8 %. Nodule mass decreased with increasing salinity levels. The nodule size remained unaffected at NaCl concentrations up to 0.4 % but was reduced at higher concentrations.  相似文献   

3.
Prohibitin (PHB or PHB1) is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114) and tyrosine 259 (Tyr259) in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121) and threonine 258 (Thr258) respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s) or known tyrosine phosphorylation site(s) revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.  相似文献   

4.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling. We found that tyrosine phosphorylation of Sprouty2 affected neither its subcellular localization nor its interaction with Grb2, FRS2/SNT, or other Sprouty proteins. In contrast, Sprouty2 tyrosine phosphorylation was necessary for its binding to the Src homology 2-like domain of c-Cbl after fibroblast growth factor (FGF) stimulation. To determine whether c-Cbl was required for Sprouty2-dependent cellular events, Sprouty2 was introduced into c-Cbl-wild-type and -null fibroblasts. Sprouty2 efficiently inhibited FGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 in c-Cbl-null fibroblasts, thus indicating that the FGF-dependent binding of c-Cbl to Sprouty2 was dispensable for its inhibitory activity. However, c-Cbl mediates polyubiquitylation/proteasomal degradation of Sprouty2 in response to FGF. Last, using Src-family pharmacological inhibitors and dominant-negative Src, we showed that a Src-like kinase was required for tyrosine phosphorylation of Sprouty2 by growth factors. Thus, these data highlight a novel negative and positive regulatory loop that allows for the controlled, homeostatic inhibition of RTK signaling.  相似文献   

5.
It has been established that in infusoria Tetrahymena pyriformis, transmission of a proliferative signal induced by epidermal growth factor (EGF) is not associated with autophosphorylation of receptor tyrosine kinases. In these microorganisms, EGF triggers the mitogenic pathway that involves membrane proteins of the tyrosine kinase type (without phosphorylation at tyrosine), adenylyl cyclase, and tyrosine-and Ca2+-dependent ERK-like kinases.  相似文献   

6.
The effects of salinity (0, 50, 100, 150, and 200 mM NaCl) and heat-shock (42°C) and their interactions on germination, seedling growth, and some relevant metabolic changes of two cultivars (cv. Giza 155 and cv. Stork) of wheat (Triticum vulgaris L.) were studied. Germination studies indicate that plants tolerated salinity up to 100 mM NaCl. The lengths of roots and shoots and their water content, as well as fresh and dry matter yield of cv. Giza 155 seedlings remained more or less unchanged up to 100 mM NaCl and of cv. Stork up to 50 mM NaCl. Salinity induced progressive increase in soluble carbohydrates, soluble proteins and proline in cv. Giza 155 and in soluble proteins, proline and other free amino acids in cv. Stork. However, under the higher salinity levels, in cv. Giza 155 increase in soluble carbohydrates was accompanied by lose in other free amino acids, whereas in cv. Stork an opposite effect was obtained. Heat-shock treatment (42°C for 24 h) induced a significant decrease in the final germination percentage, the shoot and root lengths, fresh matter yield and the water content. The dry matter yield of the two cultivars was considerably increased as compared with the corresponding treatments with NaCl only. Heat-shock treatment resulted in a significant increase, in the amount of soluble carbohydrates and proline in salt treated seedlings of both cultivars. The pattern of changes in amino acids was opposite to that of soluble proteins, indicating that the increase in soluble proteins was at the expense of other amino acids in cv. Giza 155 andvice versa in cv. Stork.  相似文献   

7.
The ability of the T lymphocyte growth factor interleukin 2 (IL-2) to activate a tyrosine protein kinase in vivo was assessed by using antibodies to phosphotyrosine in conjunction with immunoblots. Treatment of the murine IL-2-dependent cytotoxic T cell line CTLL-2 with IL-2 resulted in an increase in tyrosine phosphorylation of several proteins of molecular weights ranging from 38,000 to 120,000. The tyrosine phosphorylation in the various proteins increased in a concomitant fashion and reached a maximum level within 15 min. The concentration of IL-2 required for inducing this phosphorylation was similar to that required for stimulating [3H]thymidine uptake, indicating that the increase in tyrosine phosphorylation correlated with the ability of IL-2 to stimulate the proliferation of the CTLL-2 cells. IL-2 was also found to induce the phosphorylation of proteins on tyrosine residues in short term cultures of human T lymphocytes. These results suggest that IL-2, like other polypeptide growth factors, acts by stimulating the activity of a tyrosine protein kinase.  相似文献   

8.
The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.  相似文献   

9.
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. ‘Mister’) embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.  相似文献   

10.
Effects of salinity on growth, protein content, proline, catalase and antioxidant enzyme activity in callus of three halophytes of the Thar Desert; Salsola baryosma, Trianthema triquetra and Zygophyllum simplex were evaluated. Callus tissues were cultured on Murashige and Skoog’s medium containing different concentrations of NaCl (50, 100 and 200 mM). Increase in dry weight and soluble proteins were observed in the callus exposed to lower salinity (50 and 100 mM NaCl) in all the three species, whereas on the medium containing 200 mM NaCl, significant decrease in these two growth parameters was recorded. Under the salinity stress maximum proline accumulation was found in S. baryosma with parallel increase in soluble sugars. Among the three species, T. triquetra callus showed maximum CAT activity with 50 and 100 mM NaCl treatment, whereas the enzyme activity decreased at 200 mM NaCl treatment in all three species. The antioxidant potential steadily elevated under salt treatment in all the above three species using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant potential (FRAP) assay. Whereas, superoxide dismutase (SOD) quenching were recorded maximum at low (50 and 100 mM) concentrations in all the three species. However, T. triquetra callus showed maximum total phenolic content (TPC) 15 mg GAE g?1 with the elevated concentration of NaCl up to 200 mM, and S. baryosma callus showed lower TPC as compared to both species. A significant correlation between antioxidant capacity and TPC was observed indicating that phenolic compounds are the major contributors to the antioxidant potential in these halophyte species. FRAP and DPPH activity of Z. simplex showed maximum correlation (R = 0.992), as compared to other two species. We can conclude that all the three species exhibit a protection mechanism by sustaining growth parameters and antioxidant capacity. Due to high antioxidant property of all these species, the plant extracts may be included in nutraceutical formulations.  相似文献   

11.
《Cryobiology》2015,71(3):253-261
Considering the importance of cytochrome c in both life and death, it was of significant interest to investigate the expression of cytochrome c, its tyrosine phosphorylation status and immunolocalization patterns in a frozen-thawed buffalo sperm cell in comparison to in vitro capacitated [heparin (10 μg/ml) induced, for 4 h] and stress [apoptotic (10 μM staurosporine), oxidative (25 μM H2O2) and osmotic (180 mM NaCl) for 4 h] induced conditions. Proteins were subjected to immunoblotting and probed by using monoclonal anti-phosphotyrosine antibodies. A significant (p < 0.05) increase in expression of tyrosine phosphorylated cytochrome c was observed in capacitated buffalo sperm in comparison to frozen-thawed samples. cAMP protein kinase-A dependent and extracellular signal-regulated kinase independent tyrosine phosphorylation of cytochrome c was found during in vitro capacitation of buffalo spermatozoa. Localized increase in cytochrome c and tyrosine phosphorylated proteins were observed in frozen thawed and capacitated sperm. The information generated in this study can be used to understand the molecular mechanism of regulation of an apoptotic protein (cytochrome c) by tyrosine phosphorylation (a capacitation marker) in a frozen thawed sperm cell which could be a good target to combat apoptosis.  相似文献   

12.
The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na+ content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K+ content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K+/Na+ ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K+/Na+. Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF–MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na+ content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na+ ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the halotolerant cyanobacterium Anabaena sp is grown under low and high salinity levels.  相似文献   

13.
N. Suárez 《Flora》2011,206(3):267-275
Ipomoea pes-caprae is widespread in pantropical coastal areas along the beach. The aim of this study was to investigate the salinity tolerance level and physiological mechanisms that allow I. pes-caprae to endure abrupt increases in salinity under brief or prolonged exposure to salinity variations. Xylem sap osmolality (Xosm), leaf water relations, gas exchange, and number of produced and dead leaves were measured at short- (1-7 d) and long- (22-46 d) term after a sudden increase in soil salinity of 0, 85, 170, and 255 mM NaCl. In the short-term, Xosm was not affected by salinity, but in the long-term there was a significant increase in plants grown in presence of salt compared with control plants. After salt addition, the plants showed osmotic stress with temporal cell turgor loss. However, the water potential gradient for water uptake was re-established at 4, 7 and 22 d after salt addition, at 85, 170 and 255 mM NaCl, respectively. In the short-term I. pes-caprae was able to tolerate salinities of up to 255 mM NaCl without significant reduction in carbon assimilation or growth. With the duration of stress, leaf ion concentration continued to increase and reached toxic levels at high salinity with a progressive decrease in photosynthetic rate, reduced leaf formation and accelerated senescence. Then, if high levels of soil salts from tidal inundation occur for short periods, the survival of I. pes-caprae is possible, but prolonged exposure to salinity may induce metabolic damage and reduce drastically the plant growth.  相似文献   

14.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

15.
Very little protein tyrosine phosphorylation was observed in growing (exponential-phase) Entamoeba histolytica cells by immunoblotting and quantitative immunofluorescence. After 1 h of serum deprivation, two proteins (42 and 38 kDa in SDS-PAGE) were tyrosine phosphorylated and two more proteins (96 and 63 kDa) also showed tyrosine phosphorylation when examined after 4 h of serum deprivation. Intense enhancements of anti-phosphotyrosine immunofluorescence levels were observed during this period of serum withdrawal. Membrane-associated tyrosine kinase activity reached a peak (3.5-fold increase) 1 h after serum deprivation and decreased thereafter reaching a basal level by 2 h of serum deprivation. Interestingly, tyrosine kinase activities remained unaffected by serum stimulation (2-60 min) of serum-deprived cells. Also, during this period of serum stimulation tyrosine phosphorylated proteins of serum-deprived cells were dephosphorylated. Tyrosine phosphatase activities were suppressed during serum deprivation and on serum addition to serum-deprived cells tyrosine phosphatase activities increased significantly. Our data attest that protein tyrosine phosphorylation was associated with growth inhibition of E. histolytica and serum stimulation of E. histolytica produced tyrosine phosphatase activation and protein tyrosine dephosphorylation.  相似文献   

16.
Salinity increases phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity in sorghum leaves. This work has been focused on the mechanisms responsible for this phenomenon. The light-triggered expression of SbPPCK1 gene, accountable for the photosynthetic C4-PEPCase-k, is controlled by a complex signal transduction chain involving phospholipases C and D (PLC and PLD). These two phospholipase-derived signalling pathways were functional in salinized plants. Pharmacological agents that act on PLC (U-73122, neomycin) or PLD (n-butanol) derived signals, blocked the expression of SbPPCK1, but had little effect on PEPCase-k activity. This discrepancy was further noticed when SbPPCK1-3 gene expression and PEPCase-k activity were studied in parallel. At 172 mM, the main effect of NaCl was to decrease the rate of PEPCase-k protein turnover. Meanwhile, 258 mM NaCl significantly increased both SbPPCK1 and SbPPCK2 gene expression and/or mRNA stability. The combination of these factors contributed to maintain a high PEPCase-k activity in salinity. LiCl increased calcium-dependent protein kinase (CDPK) activity in illuminated sorghum leaves while it decreased the rate of PEPCase-k degradation. The latter effect was restrained by W7, an inhibitor of CDPK activity. Recombinant PEPCase-k protein was phosphorylated in vitro by PKA. A conserved phosphorylation motif, which can be recognized by PKA and by plant CDPKs, is present in the three PEPCase-ks proteins. Thus, it is possible that a phosphorylation event could be controlling (increasing) the stability of PEPCase-k in salinity. These results propose a new mechanism of regulation of PEPCase-k levels, and highlight the relevance of the preservation of key metabolic elements during the bulk degradation of proteins, which is commonly associated to stress.  相似文献   

17.
Thermopsis turcica is distributed naturally in saline soils. Interestingly, how T. turcica can live in harsh salt conditions is unknown. To study its defense responses under salinity, T. turcica was grown in a medium containing 100 and 200 mM NaCl for 7 and 14 days. Physiological parameters, ion contents, reactive oxygen species accumulation, activities of antioxidant enzymes/isozymes, NADPH oxidase enzyme/isozyme, lipid peroxidation (TBARS) and osmolyte contents were investigated. Stress caused a rapid decline in relative growth rate, relative water content and chlorophyll fluorescence (F v/F m) under both NaCl treatments. These traits were more suppressed at 200 mM NaCl. The decline in osmotic potential (Ψ Π) with salinity increased the gradient for water flux into the cell and assisted in turgor maintenance. The increased membrane permeability under stress caused the entrance of excess Na+ and K+ into the cell. Stress decreased superoxide dismutase, catalase and peroxidase after 14 days of growth in 200 mM NaCl, whereas glutathione reductase (GR) increased throughout the experiment. While ascorbate peroxidase (APX) increased by 44 % at 7 days, it decreased after 14 days exposure to 200 mM NaCl. 200 mM NaCl caused the highest increase in TBARS at 14 days, indicating a decrease in OH· scavenging activity. Increasing concentrations of salinity caused an increase in glycine betaine (GB) and choline (Cho), though an increase in proline was only observed at 200 mM NaCl for 14 days. Briefly, H2O2 was more efficiently eliminated in 100 mM-treated plants by the ascorbate–glutathione cycle in which APX acts a strong catalyst together with GR. Also, Cho and GB help to maintain osmotic adjustment and cytoplasmic function.  相似文献   

18.
Soil salinity is a prime impediment in the commercial production of citrus. In the present study two citrus rootstock genotypes viz. Citrus jambhiri and Citrus karna were cultured in vitro and exposed to NaCl salt stress. The previously standardized protocol was used for culture establishment and in vitro shoot and root regeneration. NaCl in different concentrations (25, 50, 75, 100 and 125 mM) was added in standardized regeneration and rooting media to note the biochemical changes due to salinity stress. Results revealed that salinity stress adversely affected the shoot and root differentiation and proved lethal above 100 mM NaCl. The hardening was also hampered due to salt stress. Among different biochemical parameters, proline, total soluble proteins and total sugars accumulation were enhanced however; total chlorophyll content was reduced under salinity stress. The revelation of some new protein polypeptides (21, 26 and 54 kDa) at different increasing salinity levels was attributed to their significance in stress alleviation.  相似文献   

19.
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.  相似文献   

20.
Abstract Protein synthesis during seed germination, a stage vulnerable to salinity stress, was investigated. The responses of barley genotypes, CM72 (California Mariout 72) and Prato, toward salinity were different during seed germination. Germination of CM72 was unaffected up to 0.34 kmol m?3 (2%) NaCl, but that of Prato was reduced 30% by 0.17 kmol m 3 NaCl and 75% by 0.34 kmol m?3 NaCl. Therefore, the former genotype is relatively more salt-tolerant than the latter. Protein synthesis in roots, shoots, and embryos was investigated in these two genotypes before and after salinity stress. The uptake of S-methionine and its incorporation into protein were significantly reduced by salinity in both genotypes. The inhibition of global protein synthesis was significant in roots and shoots. Proteins from different tissues were resolved by single and two dimensional gels. The steady-state protein levels were maintained remarkably well during salinity stress in roots and shoots. Likewise, proteins in germinating embryos were stable except for a 42-kilodalton protein unique to the salt tolerant genotype which was apparently degraded during salinity stress. Salinity, around 0.34 kmol m?3 NaCl, induced both quantitative and qualitative changes in the expression of some proteins labelled in vivo. The quantitative changes included repression or enhancement of synthesis of selected groups of proteins. Around 8% of the nearly 400 resolved proteins in a tissue was affected this way. Some of the proteins in this category were specific to each genotype. About 1 % of the total showed qualitative changes; these proteins were expressed only during salinity stress. In roots, two proteins (28, 41.7 kilodaltons) were detected in CM72 and five (28, 45, 60.5, 76.5, 82.5 kilodaltons) in Prato; only the 28-kilodalton protein was common to both genotypes. In shoots, four proteins (45, 60.5, 76.5, 82.5 kilodaltons) were found only in Prato and these were similar to those induced in roots. The four new proteins (32, 37.5, 89, 92 kilodaltons) in germinating embryos were apparently induced only in CM72; these were distinctly different from those detected in developed roots and shoots. The unique protein changes induced by salinity stress during germination (this study) and seedling growth studies reported earlier (Ramagopal, 1987b) are apparently different. The findings demonstrate that ontogeny plays an important role in the expression of tissue-specific proteins during salinity stress in the salt tolerant and sensitive barley genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号