首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of the general anesthetic halothane. In the present study, we measured the forces of interaction between the probe and the bilayer using an atomic force microscope. The changes in force curves as a function of anesthetic incorporation were analyzed. Force measurements were in good agreement with AFM imaging data, and provided valuable information on bilayer thickness, structural transitions, and halothane-induced changes in electrostatic and adhesive properties.  相似文献   

2.
Despite the vast body of literature that has accumulated on tilted peptides in the past decade, direct information on the forces that drive their interaction with lipid membranes is lacking. Here, we attempted to use atomic force microscopy (AFM) to explore the interaction forces between the Simian immunodeficiency virus peptide and phase-separated supported bilayers composed of various lipids, i.e. dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, dioleoylphosphatidic acid and dipalmitoylphosphatidylethanolamine. Histidine-tagged peptides were attached onto AFM tips terminated with nitrilotriacetate and tri(ethylene glycol) groups, an approach expected to ensure optimal exposure of the C-terminal hydrophobic domain. Force-distance curves recorded between peptide-tips and the different bilayer domains always showed a long-range repulsion upon approach and a lack of adhesion upon retraction, in marked contrast with the hydrophobic nature of the peptide. To explain this unexpected behaviour, we suggest a mechanism in which lipids are pulled out from the bilayer due to strong interactions with the peptide-tip, in agreement with the very low force needed to extract lipids from supported bilayers.  相似文献   

3.
Temperature-controlled Atomic Force Microscopy (TC-AFM) in Contact Mode is used here to directly image the mechanisms by which melting and crystallization of supported, hydrated DPPC bilayers proceed in the presence and absence of the model peptide WALP23. Melting from the gel Lβ′ to the liquid-crystalline Lα phase starts at pre-existing line-type packing defects (grain boundaries) in absence of the peptide. The exact transition temperature is shown to be influenced by the magnitude of the force exerted by the AFM probe on the bilayer, but is higher than the main transition temperature of non-supported DPPC vesicles in all cases due to bilayer–substrate interactions. Cooling of the fluid Lα bilayer shows the formation of the line-type defects at the borders between different gel-phase regions that originate from different nuclei. The number of these defects depends directly on the rate of cooling through the transition, as predicted by classical nucleation theory.The presence of the transmembrane, synthetic model peptide WALP23 is known to give rise to heterogeneity in the bilayer as microdomains with a striped appearance are formed in the DPPC bilayer. This striated phase consists of alternating lines of lipids and peptide. It is shown here that melting starts with the peptide-associated lipids in the domains, whose melting temperature is lowered by 0.8–2.0 °C compared to the remaining, peptide-free parts of the bilayer. The stabilization of the fluid phase is ascribed to adaptations of the lipids to the shorter peptide. The lipids not associated with the peptide melt at the same temperature as those in the pure DPPC supported bilayer.  相似文献   

4.
Raman scattering has been used to obtain high quality vibrational spectra of planar supported lipid bilayers (pslb's) at the silica/water interface without the use of resonance or surface enhancement. A total internal reflection geometry was used both to increase the bilayer signal and to suppress the water background. Polarization control permits the determination of four components of the Raman tensor, of which three are independent for a uniaxial film. Spectra are reported of the phospholipids DMPC, DPPC, and POPC, in the C-H stretching region and the fingerprint region. The temperature-dependent polarized spectra of POPC show only small changes over the range 14-41 degrees C. The corresponding spectra of DMPC and DPPC bilayers show large thermal changes consistent with a decreasing tilt angle from the surface normal and increasing chain ordering at lower temperatures. The thermal behavior of DMPC pslb's is similar to that of vesicles of the same lipid in bulk suspension. In contrast to calorimetry, which shows a sharp phase transition (L alpha-L beta') with decreasing temperature, the changes in the Raman spectra occur over a temperature range of ca. 10 degrees C commencing at the calorimetric phase transition temperature.  相似文献   

5.
Raman scattering has been used to obtain high quality vibrational spectra of planar supported lipid bilayers (pslb's) at the silica/water interface without the use of resonance or surface enhancement. A total internal reflection geometry was used both to increase the bilayer signal and to suppress the water background. Polarization control permits the determination of four components of the Raman tensor, of which three are independent for a uniaxial film. Spectra are reported of the phospholipids DMPC, DPPC, and POPC, in the C-H stretching region and the fingerprint region. The temperature-dependent polarized spectra of POPC show only small changes over the range 14-41 °C. The corresponding spectra of DMPC and DPPC bilayers show large thermal changes consistent with a decreasing tilt angle from the surface normal and increasing chain ordering at lower temperatures. The thermal behavior of DMPC pslb's is similar to that of vesicles of the same lipid in bulk suspension. In contrast to calorimetry, which shows a sharp phase transition (Lα-Lβ') with decreasing temperature, the changes in the Raman spectra occur over a temperature range of ca. 10 °C commencing at the calorimetric phase transition temperature.  相似文献   

6.
A simple method of generating electric field-induced concentration gradients in planar supported bilayers has been developed. Gradients of charged, fluorescently labeled probes were visualized by epifluorescence microscopy and could be observed at field strengths as low as 1 V/cm. Steady-state concentration gradients can be described by a simple competition between random diffusion and electric field-induced drift. A model based on this principle has been used to determine the diffusion coefficient of the fluorescent probes. This technique achieves a degree of electrical manipulation of supported bilayers that offers a variety of possibilities for the development of new molecular architectures and the study of biological membranes.  相似文献   

7.
Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light-microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM.  相似文献   

8.
We report the observation of influenza A M2 (M2) incorporated in a dipalmitoylphosphatidylcholine (DPPC) supported planar bilayer on mica, formed by use of a modified vesicle fusion method from proteoliposomes and visualized with contact mode atomic force microscopy. Incubation of proteoliposomes in a hyperosmotic solution and increased DPPC/M2 weight ratios improved supported planar bilayer formation by M2/DPPC proteoliposomes. M2's extra-bilayer domains were observed as particles estimated to protrude 1-1.5 nm above the bilayer surface and <4 nm in diameter. Particle density was 5-18% of the nominal tetramer density. Movement of observable M2 particles was independent of the probe tip. The mean lateral diffusion coefficient (D) of M2 was 4.4 +/- 1.0 x 10(-14) cm(2)/s. Eighty-two percent of observable particles were mobile on the observable timescale (D > 6 x 10(-15) cm(2)/s). Protein-protein interactions were also observed directly.  相似文献   

9.
Photodynamic therapy is a potentially efficient treatment for various solid tumours, among which retinoblastoma. Its efficacy depends on the preferential accumulation of photosensitizers in the malignant tissues and their accessibility to light. The specificity of drugs for retinoblastoma cells can be improved by targeting a mannose receptor overexpressed at their surface. With the aim of assessing the recognition of newly synthesized glycodendrimeric porphyrins by such receptors, we have built and characterized an original synthetic biomimetic membrane having similar lipidic composition to that of the retinal cell membranes and bearing Concanavalin A, as a model of the mannose receptor. The interaction of the porphyrin derivatives with liposomes and supported planar bilayers has been studied by dynamic light scattering and quartz crystal microbalance with dissipation monitoring (QCM-D). Only mannosylated porphyrins interacted significantly with the membrane model. The methodology used proved to be efficient for the selection of potentially active compounds.  相似文献   

10.
Cytochromes P450 (CYP) are key enzymes involved in the metabolism of drugs and other lipophilic xenobiotics and endogenous compounds. In this study, atomic force microscopy was applied to characterise the association of CYP2C9 to dimyristoylphosphatidylcholine (DMPC) supported phospholipid bilayers. CYP2C9 was found to exclusively localise in the gel domains of partially melted DMPC bilayers. Despite lacking the N-terminus transmembrane spanning domain, the CYP2C9 protein appeared to partially embed into the membrane bilayer, as evidenced by an increase in melting temperature of surrounding phospholipids. Reversible binding of CYP2C9 via an engineered His tag to a phospholipid bilayer was facilitated using nickel-chelating lipids, presenting potential applications for biosensor technologies.  相似文献   

11.
Phospholipid bilayers were studied by means of atomic force microscopy (AFM) and a surface force apparatus (SFA). The stability of the supported bilayers was described by the amount of irregularities in the topography of the membrane by means of AFM and by the occurrence of hemifusion in the SFA, which is an indicator of defective bilayers. The bilayers, composed of lipids having the same headgroup but different chain lengths in the two leaflets, were prepared by Langmuir-Blodgett deposition and transferred at different surface pressures. The topography of the supported bilayers in aqueous solution, as imaged by AFM, revealed an increasing number of defects in the supported lipid membranes with decreased deposition pressure of the outer lipid layer. These defects, which appeared in the form of monolayer and bilayer (self-assembled) thick holes within the membrane, were energetically favorable over an evenly depleted bilayer. We found that the quantity of these defects (holes of 相似文献   

12.
Electric fields have been used to manipulate and concentrate glycan-phosphatidyl inositol (GPI)-tethered proteins in planar supported bilayers. Naturally GPI-linked CD48, along with engineered forms of I-Ek and B7-2, in which their transmembrane domains have been genetically replaced with the GPI linkage, were studied. The proteins were labeled with fluorescently tagged antibodies, allowing the electric field-induced behavior to be followed by epifluorescence microscopy. All three protein complexes were observed to migrate toward the cathode with the B7-2 and CD48, each tethered to the membrane by a single GPI linker, moving significantly faster than the I-Ek, which has two GPI linkers. Patterns scratched into the membrane function as barriers to lateral diffusion and were used to isolate the proteins into highly concentrated corrals. All field-induced concentration profiles were completely reversible, indicating that the supported bilayer provides a stable, fluid environment in which GPI-tethered proteins can be manipulated. The ability to electrically control the spatial distribution of membrane-tethered proteins provides new opportunities for the study of biological membranes and the development of membrane-based devices.  相似文献   

13.
Atomic force microscopy at high temperature resolution (DeltaT < or approximately 0.1 K) provided a quantitative structural calorimetry of the transition from the fluid (Lalpha)- to the gel (Pbeta')-phase of supported dimyristoylphosphatidylcholine bilayers. Besides a determination of the main transition temperature (T0) and the van't Hoff transition enthalpy (DeltaHvH), the structural analysis in the nm-scale at T close to T0 of the ripple phase allowed an experimental estimation of the area of cooperative units from small lipid domains. Thereby, the corresponding transition enthalpy (DeltaH) of single molecules could be determined. The lipid organization and the corresponding parameters T0 and DeltaHvH (DeltaH) were modulated by heptanol or external Ca2+ and compared with physiological findings. The size of the cooperative unit was not significantly affected by the presence of 1 mM heptanol. The observed linear relationship of DeltaHvH and T0 was discussed in terms of a change in heat capacity.  相似文献   

14.
A technique for the production of supported phospholipid bilayers by adsorption and fusion of small unilamellar vesicles to supported phospholipid monolayers on quartz is described. The physical properties of these supported bilayers are compared with those of supported bilayers which are prepared by Langmuir-Blodgett deposition or by direct vesicle fusion to plain quartz slides. The time courses of vesicle adsorption, fusion and desorption are followed by total internal reflection fluorescence microscopy and the lateral diffusion of the lipids in the adsorbed layers by fluorescence recovery after photobleaching. Complete supported bilayers can be formed with phosphatidylcholine vesicles at concentrations as low as 35 microM. However, the adsorption, fusion and desorption kinetics strongly depend on the used lipid, NaCl and Ca2+ concentrations. Asymmetric negatively charged supported bilayers can be produced by incubating a phosphatidylcholine monolayer with vesicles composed of 80% phosphatidylcholine and 20% phosphatidylglycerol. Adsorbed vesicles can be removed by washing with buffer. The measured fluorescence intensities after washing are consistent with single supported bilayers. The lateral diffusion experiments confirm that continuous extended bilayers are formed by the monolayer-fusion technique. The measured lateral diffusion coefficient of NBD-labeled phosphatidylethanolamine is (3.6 +/- 0.5) x 10(-8) cm2/s in supported phosphatidylcholine bilayers, independent of the method by which the bilayers were prepared.  相似文献   

15.
The molecular basis of anesthetic interaction with membrane proteins has been explored via determination of anesthetic effects on the structure and dynamics of the extended second transmembrane domain (TM2e) of the human neuronal nicotinic acetylcholine receptor (nAChR) β2 subunit in dodecylphosphocholine (DPC) micelles by 1H and 15N solution-state NMR. Both 1-chloro-1,2,2-trifluorocyclobutane (F3) and isoflurane, two volatile general anesthetics, induced nonuniform changes in chemical shifts among residues in TM2e. Saturation transfer difference NMR experiments further confirmed the direct anesthetic interaction with TM2e. A significant and more specific anesthetic interaction was observed on three leucine residues at the helix C-terminus. Although the TM2e helical structure remained after addition of anesthetics, plausible shortening and lengthening of helix hydrogen bonds were evidenced by periodic changes in backbone amide chemical shifts. The TM2e backbone dynamics were determined on the basis of the 15N relaxation rate constants, R1 and R2, and the 15N-[1H] NOE using the model-free approach. The global tumbling time (11.7 ns) of TM2e in micelles slightly increased (∼12.3-12.5 ns) in the presence of anesthetics. The order parameter, S2, exceeded 0.9 for all 15N-labeled residues, showing a restricted internal motion. Anesthetics appear to have minor effect on the TM2e's internal motion. This study provided the basis for subsequent more comprehensive studies of anesthetic effects on the transmembrane domain complex of neuronal nAChR.  相似文献   

16.
Supported lipid bilayers (SLBs) are popular models of cell membranes with potential biotechnological applications and an understanding of the mechanisms of SLB formation is now emerging. Here we characterize, by combining atomic force microscopy, quartz crystal microbalance with dissipation monitoring, and ellipsometry, the formation of SLBs on mica from sonicated unilamellar vesicles using mixtures of zwitterionic, negatively and positively charged lipids. The results are compared with those we reported previously on silica. As on silica, electrostatic interactions were found to determine the pathway of lipid deposition. However, fundamental differences in the stability of surface-bound vesicles and the mobility of SLB patches were observed, and point out the determining role of the solid support in the SLB-formation process. The presence of calcium was found to have a much more pronounced influence on the lipid deposition process on mica than on silica. Our results indicate a specific calcium-mediated interaction between dioleoylphosphatidylserine molecules and mica. In addition, we show that the use of PLL-g-PEG modified tips considerably improves the AFM imaging of surface-bound vesicles and bilayer patches and evaluate the effects of the AFM tip on the apparent size and shape of these soft structures.  相似文献   

17.
The lipid-layer technique allows reconstituting transmembrane proteins at a high density in microns size planar membranes and suspended to a lipid monolayer at the air/water interface. In this paper, we transferred these membranes onto two hydrophobic substrates for further structural analysis of reconstituted proteins by Atomic Force Microscopy (AFM). We used a mica sheet covered by a lipid monolayer or a sheet of highly oriented pyrolytic graphite (HOPG) to trap the lipid monolayer at the interface and the suspended membranes. In both cases, we succeeded in the transfer of large membrane patches containing densely packed or 2D-crystallized proteins. As a proof of concept, we transferred and imaged the soluble Shiga toxin bound to its lipid ligand and the ATP-binding cassette (ABC) transporter BmrA reconstituted into a planar bilayer. AFM imaging with a lateral resolution in the nanometer range was achieved. Potential applications of this technique in structural biology and nanobiotechnology are discussed.  相似文献   

18.
In this study we examined the properties of supported planar bilayers (SPBs) formed from phospholipid components that comprise the mitochondrial inner membrane. We used 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and cardiolipin (CL). Liposomes of binary POPE:POPC (1:1, mol:mol) and ternary (POPE:POPC:CL (0.5:0.3:0.2, mol:mol:mol) composition were used in the formation of SPBs on mica. The characterization of the SPBs was carried out below (4 degrees C) and above (24 and 37 degrees C) the phase transition temperature (Tm) of the mixtures in solution. We observed: (i) that the thickness of the bilayers, calculated from a cross-sectional analysis, decreased as the visualization temperature increased; (ii) the existence of laterally segregated domains that respond to temperature in SPBs of POPE:POPC:CL; (iii) a decrease in height and an increase in roughness (Ra) of SPBs after cytochrome c (cyt c) injection at room temperature. To obtain further insight into the nature of the interaction between cyt c and the bilayers, the competition between 8-anilino-1-naphthalene sulfonate (ANS) and the protein for the same binding sites in liposomes was monitored by fluorescence. The results confirm the existence of preferential interaction of cyt c with CL containing liposomes. Taking these results and those of previous papers published by the group, we discuss the preferential adsorption of cyt c in CL domains. This provides support for the relevance of these phospholipids as a proton trap in the oxidative phosphorylation process that occurs in the energy transducing membranes.  相似文献   

19.
The structural features of volatile anesthetic binding sites on proteins are being examined with the use of a defined model system consisting of a four-alpha-helix bundle scaffold with a hydrophobic core. Previous work has suggested that introducing a cavity into the hydrophobic core improves anesthetic binding affinity. The more polarizable methionine side chain was substituted for a leucine, in an attempt to enhance the dispersion forces between the ligand and the protein. The resulting bundle variant has an improved affinity (K(d) = 0.20 +/- 0.01 mM) for halothane binding, compared with the leucine-containing bundle (K(d) = 0.69 +/- 0.06 mM). Photoaffinity labeling with (14)C-halothane reveals preferential labeling of the W15 residue in both peptides, supporting the view that fluorescence quenching by bound anesthetic reports both the binding energetics and the location of the ligand in the hydrophobic core. The rates of amide hydrogen exchange were similar for the two bundles, suggesting that differences in binding affinity were not due to changes in protein stability. Binding of halothane to both four-alpha-helix bundle proteins stabilized the native folded conformations. Molecular dynamics simulations of the bundles illustrate the existence of the hydrophobic core, containing both W15 residues. These results suggest that in addition to packing defects, enhanced dispersion forces may be important in providing higher affinity anesthetic binding sites. Alternatively, the effect of the methionine substitution on halothane binding energetics may reflect either improved access to the binding site or allosteric optimization of the dimensions of the binding pocket. Finally, preferential stabilization of folded protein conformations may represent a fundamental mechanism of inhaled anesthetic action.  相似文献   

20.
A quartz crystal microbalance (QCM) was used to study the adhesion behavior of supramolecular aggregates at supported planar bilayers (SPBs). The QCM technique is a suitable method to detect the adsorption of biomolecules at the quartz surface owing to its sensitivity for changes in mass and viscoelastic properties. To simulate biomembranes, the quartz plates were coated with highly ordered lipid films. Therefore, a combination of self-assembled monolayers and Langmuir-Blodgett films was used. Firstly, the adsorption of liposomes coupled with the lectin concanavalin A was investigated at glycolipid-containing model membranes. Using different carbohydrates, it was possible to determine specific and nonspecific parts of the interactions. The adhesion occurred owing to specific lectin-carbohydrate interactions (about 20%) and to nonspecific interactions (about 80%). The composition of the liposomes was changed to simulate the structure of a native biomembrane consisting of the glycocalix, the lipid-protein bilayer, and the cytoskeleton. An artificial glycocalix was created by incorporating poly(ethylene glycol) into the liposomes. Liposomes which were intravesicular polymerized with polyacrylamide or polyacrylcholate simulated the cytoskeleton. It was determined that the modified liposomes had significant lower interactions with SPBs. The adsorption was reduced by approximately 80% compared to unmodified liposomes. Secondly, a model was developed for the detection of interactions between simple or mixed bile salt micelles and model membranes. It was found that simple bile salts did not adsorb at model membranes. Binary systems consisting of bile salt and phospholipid induced only small interactions. On the other hand, ternary systems consisting of bile salt, phospholipid, and fatty acid showed strong interactions. A dependence on the chain length of the fatty acid was observed. Thirdly, the interaction between ganglioside-containing model membranes and cholera toxin (beta-subunit) was investigated. Different ganglioside fractions showed varying adsorption in the following sequence: GM1 > GD1a > GD1b > GT1b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号