首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Membrane reserves and hypotonic cell swelling   总被引:2,自引:0,他引:2  
To accommodate expanding volume (V) during hyposmotic swelling, animal cells change their shape and increase surface area (SA) by drawing extra membrane from surface and intracellular reserves. The relative contributions of these processes, sources and extent of membrane reserves are not well defined. In this study, the SA and V of single substrate-attached A549, 16HBE14o(-), CHO and NIH 3T3 cells were evaluated by reconstructing cell three-dimensional topology based on conventional light microscopic images acquired simultaneously from two perpendicular directions. The size of SA reserves was determined by swelling cells in extreme 98% hypotonic (approximately 6 mOsm) solution until membrane rupture; all cell types examined demonstrated surprisingly large membrane reserves and could increase their SA 3.6 +/- 0.2-fold and V 10.7 +/- 1.5-fold. Blocking exocytosis (by N-ethylmaleimide or 10 degrees C) reduced SA and V increases of A549 cells to 1.7 +/- 0.3-fold and 4.4 +/- 0.9-fold, respectively. Interestingly, blocking exocytosis did not affect SA and V changes during moderate swelling in 50% hypotonicity. Thus, mammalian cells accommodate moderate (<2-fold) V increases mainly by shape changes and by drawing membrane from preexisting surface reserves, while significant endomembrane insertion is observed only during extreme swelling. Large membrane reserves may provide a simple mechanism to maintain membrane tension below the lytic level during various cellular processes or acute mechanical perturbations and may explain the difficulty in activating mechanogated channels in mammalian cells.  相似文献   

2.
It is now well-established that phospholipase D is transiently stimulated upon activation by G-protein-coupled and receptor tyrosine kinase cell surface receptors in mammalian cells. Over the last 5 years, a tremendous effort has gone to identify the major intracellular regulators of mammalian phospholipase D and to the cloning of two mammalian phospholipase D enzymes (phospholipase D1 and D2). In this chapter, we review the physiological function of mammalian phospholipase D1 that is synergistically stimulated by ADP ribosylation factor, Rho and protein kinase Cα. We discuss the function of this enzyme in membrane traffic, emphasising the possible integrated relationships between consumption of vesicles in regulated exocytosis, membrane delivery and constitutive membrane traffic.  相似文献   

3.
Ulrike Homann  Gerhard Thiel   《FEBS letters》1999,460(3):495-499
Osmotically driven swelling and shrinking of guard-cell protoplasts (GCPs) requires adjustment of surface area which is achieved by addition and removal of plasma membrane material. To investigate the mechanism for adaptation of surface area we have used patch-clamp capacitance measurements. The recorded membrane capacitance (C(m)) trace of swelling and shrinking GCPs occasionally revealed discrete upward and downward deflecting capacitance steps, respectively, with a median value of about 2 fF. The observed capacitance steps resulted from the fusion and fission of single vesicles with a diameter of around 300 nm. We conclude that exo- and endocytosis of these vesicles accommodate for osmotically driven surface area changes in GCPs.  相似文献   

4.
Adrenal medullary chromaffin cells secrete catecholamines through exocytosis of their intracellular chromaffin granules. Osmotic granule swelling has been implicated to play a role in the generation of membrane stress associated with the fusion of the granule membrane. However, controversy exists as to whether swelling occurs before or after the actual fusion event. Using morphometric methods we have determined the granule diameter distributions in rapidly frozen, freeze-substituted chromaffin cells. Our measurements show that intracellular chromaffin granules increase in size from an average of 234 nm to 274 nm or 277 nm in cells stimulated to secrete with nicotine or high external K+, respectively. Granule swelling occurs before the formation of membrane contact. Ammonium chloride, an agent which inhibits stimulated catecholamine secretion by approximately 50% by altering the intragranular pH, also inhibits granule swelling. In addition, ammonium chloridetreated secreting cells show more granule-plasma membrane contacts than untreated secreting cells. Sodium propionate induces granule swelling in the absence of secretagogue and has been shown to enhance nicotine- and high K+- induced catecholamine release. These results indicate that in adrenal chromaffin cells granule swelling is an essential step in exocytosis before fusion pore formation, and is related to the pH of the granule environment.  相似文献   

5.
Cell Surface Area Regulation and Membrane Tension   总被引:17,自引:0,他引:17  
The beautifully orchestrated regulation of cell shape and volume are central themes in cell biology and physiology. Though it is less well recognized, cell surface area regulation also constitutes a distinct task for cells. Maintaining an appropriate surface area is no automatic side effect of volume regulation or shape change. The issue of surface area regulation (SAR) would be moot if all cells resembled mammalian erythrocytes in being constrained to change shape and volume using existing surface membrane. But these enucleate cells are anomalies, possessing no endomembrane. Most cells use endomembrane to continually rework their plasma membrane, even while maintaining a given size or shape. This membrane traffic is intensively studied, generally with the emphasis on targeting and turnover of proteins and delivery of vesicle contents. But surface area (SA) homeostasis, including the controlled increase or decrease of SA, is another of the outcomes of trafficking. Our principal aims, then, are to highlight SAR as a discrete cellular task and to survey evidence for the idea that membrane tension is central to the task. Cells cannot directly ``measure' their volume or SA, yet must regulate both. We posit that a homeostatic relationship exists between plasma membrane tension and plasma membrane area, which implies that cells detect and respond to deviations around a membrane tension set point. Maintenance of membrane strength during membrane turnover, a seldom-addressed aspect of SA dynamics, we examine in the context of SAR. SAR occurs in both animal and plant cells. The review shows the latter to be a continuing source of groundbreaking work on tension-sensitive SAR, but is principally slanted to animal cells. Received: 1 May 2000/Revised: 14 August 2000  相似文献   

6.
Nucleotide release constitutes the first step of the purinergic signaling cascade, but its underlying mechanisms remain incompletely understood. In alveolar A549 cells much of the experimental data is consistent with Ca2+-regulated vesicular exocytosis, but definitive evidence for such a release mechanism is missing, and alternative pathways have been proposed. In this study, we examined ATP secretion from A549 cells by total internal reflection fluorescence microscopy to directly visualize ATP-loaded vesicles and their fusion with the plasma membrane. A549 cells were labeled with quinacrine or Bodipy-ATP, fluorescent markers of intracellular ATP storage sites, and time-lapse imaging of vesicles present in the evanescent field was undertaken. Under basal conditions, individual vesicles showed occasional quasi-instantaneous loss of fluorescence, as expected from spontaneous vesicle fusion with the plasma membrane and dispersal of its fluorescent cargo. Hypo-osmotic stress stimulation (osmolality reduction from 316 to 160 mOsm) resulted in a transient, several-fold increment of exocytotic event frequency. Lowering the temperature from 37°C to 20°C dramatically diminished the fraction of vesicles that underwent exocytosis during the 2-min stimulation, from ~40% to ≤1%, respectively. Parallel ATP efflux experiments with luciferase bioluminescence assay revealed that pharmacological interference with vesicular transport (brefeldin, monensin), or disruption of the cytoskeleton (nocodazole, cytochalasin), significantly suppressed ATP release (by up to ~80%), whereas it was completely blocked by N-ethylmaleimide. Collectively, our data demonstrate that regulated exocytosis of ATP-loaded vesicles likely constitutes a major pathway of hypotonic stress-induced ATP secretion from A549 cells.  相似文献   

7.
Llobet A  Beaumont V  Lagnado L 《Neuron》2003,40(6):1075-1086
We describe a new approach for making real-time measurements of exocytosis and endocytosis in neurons and neuroendocrine cells. The method utilizes interference reflection microscopy (IRM) to image surface membrane in close contact with a glass coverslip (the "footprint"). At the synaptic terminal of retinal bipolar cells, the footprint expands during exocytosis and retracts during endocytosis, paralleling changes in total surface area measured by capacitance. In chromaffin cells, IRM detects the fusion of individual granules as the appearance of bright spots within the footprint with spatial and temporal resolution similar to total internal reflection fluorescence microscopy. Advantages of IRM over capacitance are that it can monitor changes in surface area while cells are electrically active and it can be applied to mammalian neurons with relatively small synaptic terminals. IRM reveals that vesicles at the synapse of bipolar cells rapidly collapse into the surface membrane while secretory granules in chromaffin cells do not.  相似文献   

8.
Huang C  Chen A  Guo M  Yu J 《Biotechnology letters》2007,29(9):1307-1313
A non-invasive electrorotation (ROT) technique was used to monitor the apoptosis-induced changes in HL-60 cells. The specific membrane capacitance of the cells fell from 15.6 ± 0.9 mF/cm2 to 6.4 ± 0.6 mF/cm2 after 48 h treatment with 10 nM bufalin, a component of bufadienolides in traditional Chinese medicine, Chan Su. However, the average membrane conductance remained almost constant during the first 24 h of treatment and then increased afterwards. Apoptosis was verified by a DNA fragmentation assay and scanning electron microscopy. The results demonstrate that the ROT technique gives a quantitative analysis of the toxic damage by chemicals to cells and can be exploited in the testing and development of new pharmaceuticals and active cell agents. Chengjun Huang and Ailiang Chen contributed equally to this work.  相似文献   

9.
Small organic solutes, including sugar derivatives, amino acids, etc., contribute significantly to the osmoregulation of mammalian cells. The present study explores the mechanisms of swelling-activated membrane permeability for electrolytes and neutral carbohydrates in Jurkat cells. Electrorotation was used to analyze the relationship between the hypotonically induced changes in the electrically accessible surface area of the plasma membrane (probed by the capacitance) and its permeability to the monomeric sugar alcohol sorbitol, the disaccharide trehalose, and electrolyte. Time-resolved capacitance and volumetric measurements were performed in parallel using media of different osmolalities containing either sorbitol or trehalose as the major solute. Under mild hypotonic stress in 200 mOsm sorbitol or trehalose solutions, the cells accomplished regulatory volume decrease by releasing cytosolic electrolytes presumably through pathways activated by the swelling-mediated retraction of microvilli. This is suggested by a rapid decrease of the area-specific membrane capacitance C(m) (microF/cm2). The cell membrane was impermeable to both carbohydrates in 200 mOsm media. Whereas trehalose permeability remained also very poor in 100 mOsm medium, extreme swelling of cells in a strongly hypotonic solution (100 mOsm) led to a dramatic increase in sorbitol permeability as evidenced by regulatory volume decrease inhibition. The different osmotic thresholds for activation of electrolyte release and sorbitol influx suggest the involvement of separate swelling-activated pathways. Whereas the electrolyte efflux seemed to utilize pathways preexisting in the plasma membrane, putative sorbitol channels might be inserted into the membrane from cytosolic vesicles via swelling-mediated exocytosis, as indicated by a substantial increase in the whole-cell capacitance C(C) (pF) in strongly hypotonic solutions.  相似文献   

10.
The spermatozoon is a very specialized cell capable of carrying out a limited set of functions with high efficiency. Sperm are then excellent model cells to dissect fundamental processes such as regulated exocytosis. The secretion of the single dense-core granule of mammalian spermatozoa relies on the same highly conserved molecules and goes through the same stages as exocytosis in other types of cells. In this study, we describe the presence of Munc18-1 in human sperm and show that this protein has an essential role in acrosomal exocytosis. We observed that inactivation of endogenous Munc18-1 with a specific antibody precluded the stabilization of trans-SNARE complexes and inhibited acrosomal exocytosis. Addition of recombinant Munc18-1 blocked secretion by sequestering monomeric syntaxin, an effect that was rescued by α-soluble NSF attachment protein. By electron microscopy, we observed that both the anti-Munc18-1 antibody and recombinant Munc18-1 inhibited the docking of the acrosome to the plasma membrane. In conclusion, our results indicate that Munc18-1 plays a key role in the dynamics of trans-SNARE complex assembly and/or stabilization, a process that is necessary for the docking of the outer acrosomal membrane to the plasma membrane and subsequent fusion pore opening.  相似文献   

11.
The specific membrane capacitance and conductivity of mammalian cells, which reflect their surface morphological complexities and membrane barrier functions, respectively, have been shown to respond to cell physiologic and pathologic changes. Here, the effects of induced apoptosis on these membrane properties of cultured human promyelocytic HL-60 cells are reported. Changes in membrane capacitance and conductivity were deduced from measurements of cellular dielectrophoretic crossover frequencies following treatment with genistein (GEN). The apparent specific cell membrane capacitance of HL-60 cells fell from an initial value of 17.6±0.9 to 9.1±0.5 mF/m2 4 h after treatment. Changes began within minutes of treatment and preceded both the externalization of phosphatidylserine (PS), as gauged by the Annexin V assay, and the appearance of a sub-G1 cell subpopulation, as determined through ethidium bromide staining of DNA. Treatment by the broad spectrum caspase inhibitor N-benzyloxycarbony-Val-Ala-Asp(O-methyl)-fluoromethyketone (zVAD-fmk) did not prevent these early cell membrane dielectric responses, suggesting that the caspase system was not involved. Although membrane conductivity did not alter during the first 4 h of GEN treatment, it rose significantly and progressively thereafter. Finally, as the barrier function failed and the cells became necrotic, it increased by many orders of magnitude. The effective membrane capacitance and conductivity findings serve to focus attention on the membrane as a site for early participation in apoptosis. In conjunction with our prior reports of the use of dielectric methods for cell manipulation and separation, these results demonstrate that dielectrophoretic technologies should be applicable to the rapid detection, separation, and quantification of normal, apoptotic, and necrotic cells from cell mixtures.  相似文献   

12.
Upstream intermediates of intracellular signaling involved in cell volume regulation remain poorly explored. Recently, we demonstrated that osmolarity-induced volume changes in permeabilized cells were several-fold higher than those observed with intact cells, indicating the osmosensing properties of cytoplasmic gel. To further examine the role of cytoplasmic biogel in cell volume regulation, we compared the action of short-term heat treatment on volume changes in intact and permeabilized A549 cells. Pretreatment of A549 cells at 48 °C suppressed swelling triggered by dissipation of Donnan’s equilibrium as well as by hyposmotic medium. Significantly, heat treatment completely abolished the action of hyposomotic medium on volume changes in permeabilized cells, showing that temperature elevation suppresses osmosensing properties via its effect on biogel rather than on plasma membrane water permeability. Identical heat treatment blocked the regulatory volume decrease (RVD) as well as the increment of Ba2+-sensitive K+-channel activity seen in control cells exposed to hyposmotic swelling. Unlike swelling, hyperosmotic shrinkage was decreased by twofold in cells subjected to 10-min preincubation at 50 °C. Our results disclose that osmosensing by cytoplasmic gel is a key event in the RVD triggered by hypotonic swelling. The role of biogel and plasma membrane in intracellular signaling triggered by hyperosmotic shrinkage should be further investigated.  相似文献   

13.
Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis.  相似文献   

14.
Neurons and neuroendocrine cells must retrieve plasma membrane excess and refill vesicle pools depleted by exocytosis. To perform these tasks cells can use different endocytosis/recycling mechanisms whose selection will impact on vesicle recycling time and secretion performance. We used FM1-43 to evaluate in the same experiment exocytosis, endocytosis, and recovery of releasable vesicles on mouse chromaffin cells. Various exocytosis levels were induced by a variety of stimuli, and we discriminated the resultant endocytosis-recycling responses according to their ability to rapidly generate releasable vesicles. Exocytosis of 20% of plasma membrane (provoked by nicotine/acetylcholine) was followed by total recovery of releasable vesicles. If a stronger stimulus (50 mM K+ and 2 mM Ca2+) provoking intense exocytosis (51 ± 7%) was applied, endocytosis still retrieved all the fused membrane, but only a fraction (19 ± 2%) was releasable by a second stimulus. Using ADVASEP-7 or bromophenol blue to quickly eliminate fluorescence from noninternalized FM1-43, we determined that this fraction became releasable in <2 min. The remaining nonreleasable fraction was distributed mainly as fluorescent spots (0.7 µm) selectively labeled by 40- to 70-kDa dextrans and was suppressed by a phosphatidylinositol-3-phosphate kinase inhibitor, suggesting that it had been formed by a bulk retrieval mechanism. We concluded that chromaffin cells can rapidly recycle significant fractions of their total vesicle population, and that this pathway prevails when cholinergic agonists are used as secretagogues. When exocytosis exceeded 20% of plasma membrane, an additional mechanism was activated, which was unable to produce secretory vesicles in our experimental time frame but appeared crucial to maintaining membrane surface homeostasis under extreme conditions. endocytosis; mouse chromaffin cells; calcium signal; FM1-43; ADVASEP-7; bromophenol blue  相似文献   

15.
Work with Paramecium has contributed to the actual understanding of certain aspects of exocytosis regulation, including membrane fusion. The system is faster and more synchronous than any other dense-core vesicle system described and its highly regular design facilitates correlation of functional and ultrastructural (freeze-fracture) features. From early times on, several crucial aspects of exocytosis regulation have been found in Paramecium cells, e.g. genetically controlled microdomains (with distinct ultrastructure) for organelle docking and membrane fusion, involvement of calmodulin in establishing such microdomains, priming by ATP, occurrence of focal fusion with active participation of integral and peripheral proteins, decay of a population of integral proteins ("rosettes", mandatory for fusion capacity) into subunits and their lateral dispersal during fusion, etc. The size of rosette particles and their dispersal upon focal fusion would be directly compatible with proteolipid V(0) subunits of a V-ATPase, much better than the size predicted for oligomeric SNARE pins (SCAMPs are unknown from Paramecium at this time). However, there are some restrictions for a straightforward interpretation of ultrastructural results. The rather pointed, nipple-like tip of the trichocyst membrane could accommodate only one (or very few) potential V(0) counterpart(s), while the overlaying domain of the cell membrane contains numerous rosette particles. Particle size is compatible with V(0), but larger than that assumed for the SNARE complexes. When membrane fusion is induced in the presence of antibodies against cell surface components, focal fusion is seen to occur with dispersing rosette particles but without dispersal of their subunits and without pore expansion. Clearly, this is required for completing fusion and pore expansion. After cloning SNARE and V(0) components in Paramecium (with increasing details becoming rapidly available), we may soon be able to address the question more directly, whether any of these components or some new ones to be detected, serve exocytotic and/or any other membrane fusions in Paramecium.  相似文献   

16.
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.  相似文献   

17.
《Biophysical journal》2021,120(24):5521-5529
The ability of cells to regulate their shape and volume is critical for many cell functions. How endocytosis and exocytosis, as important ways of membrane trafficking, affect cellular volume regulation is still unclear. Here, we develop a theoretical framework to study the dynamics of cell volume, endocytosis, and exocytosis in response to osmotic shocks and mechanical loadings. This model can not only explain observed dynamics of endocytosis and exocytosis during osmotic shocks but also predict the dynamics of endocytosis and exocytosis during cell compressions. We find that a hypotonic shock stimulates exocytosis, while a hypertonic shock stimulates endocytosis; and exocytosis in turn allows cells to have a dramatic change in cell volume but a small change in membrane tension during hyposmotic swelling, protecting cells from rupture under high tension. In addition, we find that cell compressions with various loading speeds induce three distinct dynamic modes of endocytosis and exocytosis. Finally, we show that increasing endocytosis and exocytosis rates reduce the changes in cell volume and membrane tension under fast cell compression, whereas they enhance the changes in cell volume and membrane tension under slow cell compression. Together, our findings reveal critical roles of endocytosis and exocytosis in regulating cell volume and membrane tension.  相似文献   

18.
Membrane fusion remains one of the less well-understood processes in cell biology. A variety of mechanisms have been proposed to explain how the generation of fusogenic lipids at sites of exocytosis facilitates secretion in mammalian cells. Over the last decade, chromaffin cells have served as an important cellular model to demonstrate a key role for phospholipase D1 (PLD1) generated phosphatidic acid in regulated exocytosis. The current model proposes that phosphatidic acid plays a biophysical role, generating a negative curvature and thus promoting fusion of secretory vesicles with the plasma membrane. Moreover, multiple signaling pathways converging on PLD1 regulation have been unraveled in chromaffin cells, suggesting a complex level of regulation dependant on the physiological context.  相似文献   

19.
目的:研究转录因子WSTF对肺癌细胞增殖和侵袭作用的影响。方法:采用慢病毒介导的基因转染方法建立A549细胞WSTF高表达细胞系A549-WSTF和空质粒对照细胞系A549-control。细胞增殖实验和克隆形成实验观察ING5过表达对肺癌A549细胞增殖能力的影响;Trans-well迁移实验和侵袭实验观察WSTF对肺癌细胞迁移和侵袭能力的影响。结果:Western blot验证A549-WSTF细胞WSTF蛋白水平显著高于对照细胞A549-control,P=0.0004。WSTF高表达明显促进了肺癌细胞的增殖能力(1-4天P值分别为0.002、0.0004、0.0002和3.21×10-5)和克隆形成能力(P=0.004);WSTF过表达还显著促进了肺癌细胞从trans-well小室迁移到下室的作用,其OD570值分别为0.626±0.013(A549-WSTF)和0.322±0.010(A549-control),P=2.37×10-5;WSTF还促进肺癌细胞穿透基质胶迁移到下室,其OD570值分别为0.600±0.027(A549-WSTF)和0.333±0.017(A549-control),P=0.0004。结论:WSTF可以促进肺癌细胞的增殖和侵袭能力而发挥促癌作用。  相似文献   

20.
Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号