首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin JY  Ten Have TR  Elliott MR 《Biometrics》2009,65(2):505-513
Summary .  We consider a Markov structure for partially unobserved time-varying compliance classes in the Imbens–Rubin (1997, The Annals of Statistics 25, 305–327) compliance model framework. The context is a longitudinal randomized intervention study where subjects are randomized once at baseline, outcomes and patient adherence are measured at multiple follow-ups, and patient adherence to their randomized treatment could vary over time. We propose a nested latent compliance class model where we use time-invariant subject-specific compliance principal strata to summarize longitudinal trends of subject-specific time-varying compliance patterns. The principal strata are formed using Markov models that relate current compliance behavior to compliance history. Treatment effects are estimated as intent-to-treat effects within the compliance principal strata.  相似文献   

2.
Li E  Zhang D  Davidian M 《Biometrics》2004,60(1):1-7
The relationship between a primary endpoint and features of longitudinal profiles of a continuous response is often of interest, and a relevant framework is that of a generalized linear model with covariates that are subject-specific random effects in a linear mixed model for the longitudinal measurements. Naive implementation by imputing subject-specific effects from individual regression fits yields biased inference, and several methods for reducing this bias have been proposed. These require a parametric (normality) assumption on the random effects, which may be unrealistic. Adapting a strategy of Stefanski and Carroll (1987, Biometrika74, 703-716), we propose estimators for the generalized linear model parameters that require no assumptions on the random effects and yield consistent inference regardless of the true distribution. The methods are illustrated via simulation and by application to a study of bone mineral density in women transitioning to menopause.  相似文献   

3.
Zhang D  Davidian M 《Biometrics》2001,57(3):795-802
Normality of random effects is a routine assumption for the linear mixed model, but it may be unrealistic, obscuring important features of among-individual variation. We relax this assumption by approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and Nychka (1987, Econometrics 55, 363-390), which includes normality as a special case and provides flexibility in capturing a broad range of nonnormal behavior, controlled by a user-chosen tuning parameter. An advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out using standard optimization techniques. We demonstrate that standard information criteria may be used to choose the tuning parameter and detect departures from normality, and we illustrate the approach via simulation and using longitudinal data from the Framingham study.  相似文献   

4.
Ryu D  Li E  Mallick BK 《Biometrics》2011,67(2):454-466
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves.  相似文献   

5.
Missing data are a common problem in longitudinal studies in the health sciences. Motivated by data from the Muscatine Coronary Risk Factor (MCRF) study, a longitudinal study of obesity, we propose a simple imputation method for handling non-ignorable non-responses (i.e., when non-response is related to the specific values that should have been obtained) in longitudinal studies with either discrete or continuous outcomes. In the proposed approach, two regression models are specified; one for the marginal mean of the response, the other for the conditional mean of the response given non-response patterns. Statistical inference for the model parameters is based on the generalized estimating equations (GEE) approach. An appealing feature of the proposed method is that it can be readily implemented using existing, widely-available statistical software. The method is illustrated using longitudinal data on obesity from the MCRF study.  相似文献   

6.
Leung Lai T  Shih MC  Wong SP 《Biometrics》2006,62(1):159-167
To circumvent the computational complexity of likelihood inference in generalized mixed models that assume linear or more general additive regression models of covariate effects, Laplace's approximations to multiple integrals in the likelihood have been commonly used without addressing the issue of adequacy of the approximations for individuals with sparse observations. In this article, we propose a hybrid estimation scheme to address this issue. The likelihoods for subjects with sparse observations use Monte Carlo approximations involving importance sampling, while Laplace's approximation is used for the likelihoods of other subjects that satisfy a certain diagnostic check on the adequacy of Laplace's approximation. Because of its computational tractability, the proposed approach allows flexible modeling of covariate effects by using regression splines and model selection procedures for knot and variable selection. Its computational and statistical advantages are illustrated by simulation and by application to longitudinal data from a fecundity study of fruit flies, for which overdispersion is modeled via a double exponential family.  相似文献   

7.
Roy J  Lin X 《Biometrics》2005,61(3):837-846
We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require covariates to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this article, we first study the asymptotic bias that would result from applying existing methods, where missing time-varying covariates are handled using naive approaches, which include: (1) using only baseline values; (2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We next propose a selection/transition model that allows covariates to be missing in addition to the outcome variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from a longitudinal study of human immunodeficiency virus (HIV)-infected women are used to illustrate the methodology.  相似文献   

8.
Joint modeling of longitudinal data and survival data has been used widely for analyzing AIDS clinical trials, where a biological marker such as CD4 count measurement can be an important predictor of survival. In most of these studies, a normal distribution is used for modeling longitudinal responses, which leads to vulnerable inference in the presence of outliers in longitudinal measurements. Powerful distributions for robust analysis are normal/independent distributions, which include univariate and multivariate versions of the Student's t, the slash and the contaminated normal distributions in addition to the normal. In this paper, a linear‐mixed effects model with normal/independent distribution for both random effects and residuals and Cox's model for survival time are used. For estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. Some simulation studies are performed for illustration of the proposed method. Also, the method is illustrated on a real AIDS data set and the best model is selected using some criteria.  相似文献   

9.
We propose a modelling framework to study the relationship betweentwo paired longitudinally observed variables. The data for eachvariable are viewed as smooth curves measured at discrete time-pointsplus random errors. While the curves for each variable are summarizedusing a few important principal components, the associationof the two longitudinal variables is modelled through the associationof the principal component scores. We use penalized splinesto model the mean curves and the principal component curves,and cast the proposed model into a mixed-effects model frameworkfor model fitting, prediction and inference. The proposed methodcan be applied in the difficult case in which the measurementtimes are irregular and sparse and may differ widely acrossindividuals. Use of functional principal components enhancesmodel interpretation and improves statistical and numericalstability of the parameter estimates.  相似文献   

10.
Marginalized models (Heagerty, 1999, Biometrics 55, 688-698) permit likelihood-based inference when interest lies in marginal regression models for longitudinal binary response data. Two such models are the marginalized transition and marginalized latent variable models. The former captures within-subject serial dependence among repeated measurements with transition model terms while the latter assumes exchangeable or nondiminishing response dependence using random intercepts. In this article, we extend the class of marginalized models by proposing a single unifying model that describes both serial and long-range dependence. This model will be particularly useful in longitudinal analyses with a moderate to large number of repeated measurements per subject, where both serial and exchangeable forms of response correlation can be identified. We describe maximum likelihood and Bayesian approaches toward parameter estimation and inference, and we study the large sample operating characteristics under two types of dependence model misspecification. Data from the Madras Longitudinal Schizophrenia Study (Thara et al., 1994, Acta Psychiatrica Scandinavica 90, 329-336) are analyzed.  相似文献   

11.
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.  相似文献   

12.
In many longitudinal studies, the individual characteristics associated with the repeated measures may be possible covariates of the time to an event of interest, and thus, it is desirable to model the time-to-event process and the longitudinal process jointly. Statistical analyses may be further complicated in such studies with missing data such as informative dropouts. This article considers a nonlinear mixed-effects model for the longitudinal process and the Cox proportional hazards model for the time-to-event process. We provide a method for simultaneous likelihood inference on the 2 models and allow for nonignorable data missing. The approach is illustrated with a recent AIDS study by jointly modeling HIV viral dynamics and time to viral rebound.  相似文献   

13.
For large data sets, it can be difficult or impossible to fit models with random effects using standard algorithms due to memory limitations or high computational burdens. In addition, it would be advantageous to use the abundant information to relax assumptions, such as normality of random effects. Motivated by data from an epidemiologic study of childhood growth, we propose a 2-stage method for fitting semiparametric random effects models to longitudinal data with many subjects. In the first stage, we use a multivariate clustering method to identify G相似文献   

14.
Balshaw RF  Dean CB 《Biometrics》2002,58(2):324-331
In many longitudinal studies, interest focuses on the occurrence rate of some phenomenon for the subjects in the study. When the phenomenon is nonterminating and possibly recurring, the result is a recurrent-event data set. Examples include epileptic seizures and recurrent cancers. When the recurring event is detectable only by an expensive or invasive examination, only the number of events occurring between follow-up times may be available. This article presents a semiparametric model for such data, based on a multiplicative intensity model paired with a fully flexible nonparametric baseline intensity function. A random subject-specific effect is included in the intensity model to account for the overdispersion frequently displayed in count data. Estimators are determined from quasi-likelihood estimating functions. Because only first- and second-moment assumptions are required for quasi-likelihood, the method is more robust than those based on the specification of a full parametric likelihood. Consistency of the estimators depends only on the assumption of the proportional intensity model. The semiparametric estimators are shown to be highly efficient compared with the usual parametric estimators. As with semiparametric methods in survival analysis, the method provides useful diagnostics for specific parametric models, including a quasi-score statistic for testing specific baseline intensity functions. The techniques are used to analyze cancer recurrences and a pheromone-based mating disruption experiment in moths. A simulation study confirms that, for many practical situations, the estimators possess appropriate small-sample characteristics.  相似文献   

15.
Mills JE  Field CA  Dupuis DJ 《Biometrics》2002,58(4):727-734
Longitudinal data modeling is complicated by the necessity to deal appropriately with the correlation between observations made on the same individual. Building on an earlier nonrobust version proposed by Heagerty (1999, Biometrics 55, 688-698), our robust marginally specified generalized linear mixed model (ROBMS-GLMM) provides an effective method for dealing with such data. This model is one of the first to allow both population-averaged and individual-specific inference. As well, it adopts the flexibility and interpretability of generalized linear mixed models for introducing dependence but builds a regression structure for the marginal mean, allowing valid application with time-dependent (exogenous) and time-independent covariates. These new estimators are obtained as solutions of a robustified likelihood equation involving Huber's least favorable distribution and a collection of weights. Huber's least favorable distribution produces estimates that are resistant to certain deviations from the random effects distributional assumptions. Innovative weighting strategies enable the ROBMS-GLMM to perform well when faced with outlying observations both in the response and covariates. We illustrate the methodology with an analysis of a prospective longitudinal study of laryngoscopic endotracheal intubation, a skill that numerous health-care professionals are expected to acquire. The principal goal of our research is to achieve robust inference in longitudinal analyses.  相似文献   

16.
We propose a state space model for analyzing equally or unequally spaced longitudinal count data with serial correlation. With a log link function, the mean of the Poisson response variable is a nonlinear function of the fixed and random effects. The random effects are assumed to be generated from a Gaussian first order autoregression (AR(1)). In this case, the mean of the observations has a log normal distribution. We use a combination of linear and nonlinear methods to take advantage of the Gaussian process embedded in a nonlinear function. The state space model uses a modified Kalman filter recursion to estimate the mean and variance of the AR(1) random error given the previous observations. The marginal likelihood is approximated by numerically integrating out the AR(1) random error. Simulation studies with different sets of parameters show that the state space model performs well. The model is applied to Epileptic Seizure data and Primary Care Visits Data. Missing and unequally spaced observations are handled naturally with this model.  相似文献   

17.
Two-part regression models are frequently used to analyze longitudinal count data with excess zeros, where the same set of subjects is repeatedly observed over time. In this context, several sources of heterogeneity may arise at individual level that affect the observed process. Further, longitudinal studies often suffer from missing values: individuals dropout of the study before its completion, and thus present incomplete data records. In this paper, we propose a finite mixture of hurdle models to face the heterogeneity problem, which is handled by introducing random effects with a discrete distribution; a pattern-mixture approach is specified to deal with non-ignorable missing values. This approach helps us to consider overdispersed counts, while allowing for association between the two parts of the model, and for non-ignorable dropouts. The effectiveness of the proposal is tested through a simulation study. Finally, an application to real data on skin cancer is provided.  相似文献   

18.
Studies on HIV dynamics in AIDS research are very important in understanding the pathogenesis of HIV‐1 infection and also in assessing the effectiveness of antiretroviral (ARV) treatment. Viral dynamic models can be formulated through a system of nonlinear ordinary differential equations (ODE), but there has been only limited development of statistical methodologies for inference. This article, motivated by an AIDS clinical study, discusses a hierarchical Bayesian nonlinear mixed‐effects modeling approach to dynamic ODE models without a closed‐form solution. In this model, we fully integrate viral load, medication adherence, drug resistance, pharmacokinetics, baseline covariates and time‐dependent drug efficacy into the data analysis for characterizing long‐term virologic responses. Our method is implemented by a data set from an AIDS clinical study. The results suggest that modeling HIV dynamics and virologic responses with consideration of time‐varying clinical factors as well as baseline characteristics may be important for HIV/AIDS studies in providing quantitative guidance to better understand the virologic responses to ARV treatment and to help the evaluation of clinical trial design in response to existing therapies.  相似文献   

19.
Dropouts are common in longitudinal study. If the dropout probability depends on the missing observations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID). Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We propose a conditional autoregressive model for longitudinal binary data with an ID model such that the probabilities of positive outcomes as well as the drop‐out indicator in each occasion are logit linear in some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects, the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further extended to a novel model that models the outcome and dropout jointly such that their dependency is formulated through an odds ratio function. Parameters are estimated by a Bayesian approach implemented using the user‐friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker after allowing for an ID process in the data. Finally the effect of drop‐out on parameter estimates is evaluated through simulation studies.  相似文献   

20.
Brent A Coull 《Biometrics》2011,67(2):486-494
Summary In many biomedical investigations, a primary goal is the identification of subjects who are susceptible to a given exposure or treatment of interest. We focus on methods for addressing this question in longitudinal studies when interest focuses on relating susceptibility to a subject's baseline or mean outcome level. In this context, we propose a random intercepts–functional slopes model that relaxes the assumption of linear association between random coefficients in existing mixed models and yields an estimate of the functional form of this relationship. We propose a penalized spline formulation for the nonparametric function that represents this relationship, and implement a fully Bayesian approach to model fitting. We investigate the frequentist performance of our method via simulation, and apply the model to data on the effects of particulate matter on coronary blood flow from an animal toxicology study. The general principles introduced here apply more broadly to settings in which interest focuses on the relationship between baseline and change over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号