首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperature-sensitive transforming mutants of the v-rel oncogene.   总被引:3,自引:4,他引:3       下载免费PDF全文
By making site-directed mutations in the avian retroviral oncogene v-rel, we created two temperature-sensitive (ts) transforming mutants; these changes were analogous to mutations previously shown to confer a ts function onto the Dorsal protein of Drosophila melanogaster. Chicken spleen cells infected with the ts v-rel mutants formed colonies in agar at 36.5 degrees C but not at 41.5 degrees C. In addition, spleen cells derived from the ts v-rel-transformed colonies could be propagated in liquid culture at 36.5 degrees C but rapidly senesced at 41.5 degrees C. Both mutant v-Rel proteins were also ts for DNA binding in vitro. These mutants may be valuable for identifying genes directly regulated by v-rel.  相似文献   

2.
T D Gilmore  H M Temin 《Cell》1986,44(5):791-800
Reticuloendotheliosis virus strain T (REV-T) is a highly oncogenic avian retrovirus that transforms early lymphoid cells in vivo and in vitro, but REV-T does not transform chicken embryo fibroblasts (CEF). Using antisera to p59v-rel, the v-rel oncogene product of REV-T, we show that p59v-rel is expressed at equal levels and is a phosphoprotein in REV-T infected spleen cells and CEF. Biochemical fractionation and immunofluorescence of REV-T infected nontransformed CEF show that p59v-rel is loosely associated with the nucleus. However, in REV-T transformed spleen cells p59v-rel is primarily a cytoplasmic protein. MSB-1 cells, a Marek's disease virus transformed T cell leukemic line, and E26 virus transformed myeloid cells show nuclear staining of p59v-rel when they are infected by REV-T. Our results indicate that there is a correlation between a cytoplasmic localization of p59v-rel and transformation by REV-T, and they suggest that p59v-rel cannot transform cells in which it assumes solely a nuclear location.  相似文献   

3.
4.
The major nucleocapsid protein of avian retroviruses, pp 12, binds to single-stranded viral RNA with high affinity. Phosphorylation at Ser-40 is necessary for this binding. In order to examine the role of phosphorylation of serine 40 in the biological function of pp 12, we have introduced a series of amino acid substitutions at this position in the Rous sarcoma virus (Pr-C) protein. Substitution of threonine, alanine, or three other amino acids for Ser-40 had very little or no detectable effect on viral replication, nor did the control substitution of glycine for Ser-43, a nonphosphorylated residue. In vivo and in vitro, the Ala-40 and probably the Thr-40 substituted p 12 proteins are phosphorylated at alternative sites which are phosphorylated to a minor extent in vivo in the wild type protein. A study of the RNA binding properties of Ala-40 substituted p 12 has indicated that the protein has been stabilized in a high affinity RNA binding state which is independent of phosphorylation. The viability of the Ala-40 mutant virus indicates that this high binding affinity may be required for biological activity.  相似文献   

5.
Recently, it was reported that the product of Birt-Hogg-Dubé syndrome gene (folliculin, FLCN) is directly phosphorylated by 5′-AMP-activated protein kinase (AMPK). In this study, we identified serine 62 (Ser62) as a phosphorylation site in FLCN and generated an anti-phospho-Ser62-FLCN antibody. Our analysis suggests that Ser62 phosphorylation is indirectly up-regulated by AMPK and that another residue is directly phosphorylated by AMPK. By binding with FLCN-interacting proteins (FNIP1 and FNIP2/FNIPL), Ser62 phosphorylation is increased. A phospho-mimic mutation at Ser62 enhanced the formation of the FLCN-AMPK complex. These results suggest that function(s) of FLCN-AMPK-FNIP complex is regulated by Ser62 phosphorylation.

Structured summary

MINT-7298145, MINT-7298166: Flcn (uniprotkb:Q76JQ2) physically interacts (MI:0915) with AMPK alpha 1 (uniprotkb:P54645) by anti tag coimmunoprecipitation (MI:0007)MINT-7298267: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) tsc2 (uniprotkb:P49816) by protein kinase assay (MI:0424)MINT-7298182: FNIP1 (uniprotkb:Q8TF40) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)MINT-7298132: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) Flcn (uniprotkb:Q76JQ2) by protein kinase assay (MI:0424)MINT-7298229: FNIPL (uniprotkb:Q9P278) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
7.
C E Andoniou  C B Thien    W Y Langdon 《The EMBO journal》1994,13(19):4515-4523
v-cbl is the transforming gene of a murine retrovirus which induces pre-B cell lymphomas and myelogenous leukaemias. It encodes 40 kDa of a gag fusion protein which is localized in the cytoplasm and nucleus of infected cells. The c-cbl oncogene encodes a 120 kDa cytoplasmic protein and its overexpression is not associated with tumorigenesis. The c-cbl sequence has shown that v-cbl was generated by a truncation that removed 60% of the C-terminus. In this study, we carried out experiments to identify the position within cbl where the transition occurs between non-tumorigenic and tumorigenic forms. These experiments focused attention on a region of 17 amino acids which is deleted from cbl in the 70Z/3 pre-B lymphoma due to a splice acceptor site mutation. This mutation activates cbl's tumorigenic potential and induces its tyrosine phosphorylation. We also show that the expression of the v-abl and bcr-abl oncogenes results in the induction of cbl tyrosine phosphorylation, and that abl and cbl associate in vivo. These findings demonstrate that tyrosine-phosphorylated cbl promotes tumorigenesis and that cbl is a downstream target of the bcr-abl and v-abl kinases.  相似文献   

8.
Insulin resistance contributes importantly to the pathophysiology of type 2 diabetes mellitus. One mechanism mediating insulin resistance may involve the phosphorylation of serine residues in insulin receptor substrate-1 (IRS-1), leading to impairment in the ability of IRS-1 to activate downstream phosphatidylinositol 3-kinase-dependent pathways. Insulin-resistant states and serine phosphorylation of IRS-1 are associated with the activation of the inhibitor kappaB kinase (IKK) complex. However, the precise molecular mechanisms by which IKK may contribute to the development of insulin resistance are not well understood. In this study, using phosphospecific antibodies against rat IRS-1 phosphorylated at Ser(307) (equivalent to Ser(312) in human IRS-1), we observed serine phosphorylation of IRS-1 in response to TNF-alpha or calyculin A treatment that paralleled surrogate markers for IKK activation. The phosphorylation of human IRS-1 at Ser(312) in response to tumor necrosis factor-alpha was significantly reduced in cells pretreated with the IKK inhibitor 15 deoxy-prostaglandin J(2) as well as in cells derived from IKK knock-out mice. We observed interactions between endogenous IRS-1 and IKK in intact cells using a co-immunoprecipitation approach. Moreover, this interaction between IRS-1 and IKK in the basal state was reduced upon IKK activation and increased serine phosphorylation of IRS-1. Data from in vitro kinase assays using recombinant IRS-1 as a substrate were consistent with the ability of IRS-1 to function as a direct substrate for IKK with multiple serine phosphorylation sites in addition to Ser(312). Taken together, our data suggest that IRS-1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser(312) (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.  相似文献   

9.
10.
11.
12.
Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1   总被引:3,自引:0,他引:3  
Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3beta) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G2/M phase, was enhanced by tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3beta), and was stimulated in vitro by CDK 1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL-resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.  相似文献   

13.
We have previously shown that an intracellular mechanism down regulates epidermal growth factor (EGF) receptor levels in rodent fibroblasts transformed by the src oncogene (W. J. Wasilenko, L. K. Shawver, and M. J. Weber, J. Cell. Physiol. 131:450-457, 1987). We now report that this down regulation is due to an inhibition of EGF receptor biosynthesis. With Rat-1 (R1) cells infected with a temperature-sensitive src mutant, we found that 125I-labeled EGF binding to cells began to decrease soon after the activation of pp60v-src by shift down to the permissive temperature for transformation. This effect of src on EGF receptors was reversible. Pulse-chase studies with [35S]methionine-labeled cells revealed that the tyrosine protein kinase activity of pp60v-src had little if any effect on EGF receptor degradation rate. By contrast, the expression of pp60v-src caused a large reduction in the apparent rate of EGF receptor biosynthesis. Northern (RNA) blot analysis demonstrated that pp60v-src also caused marked reductions in the steady-state level of EGF receptor mRNA. These data indicate that one way the expression of the src oncogene can affect the machinery of growth control is by affecting the expression of specific genes for growth factor receptors.  相似文献   

14.
Two-dimensional proton NMR studies were performed on the c-Ha-ras encoded proto-oncogene product p21C. COSY and NOESY spectra of the p21C.GDP.Mg2+ complex show that the ribose H1 proton of the bound GDP is in close proximity to the aromatic side chain of a phenylalanyl residue. From sequence homology with the bacterial elongation factor Tu (EF-Tu) and the known X-ray structure of the EF-Tu.GDP.Mg2+ complex it may be inferred that the Phe residue in question is either Phe78 or Phe82 in the p21 sequence.  相似文献   

15.
16.
17.
Phosphorylation is a potent mechanism regulating the activity of many intracellular enzymes. We have discovered that the product of the human urokinase plasminogen activator gene, pro-uPA, is phosphorylated in serine in at least two human cell lines. Phosphorylation occurs within the cell during biosynthesis, and phosphorylated intracellular pro-uPA is secreted into the medium. Of the secreted pro-uPA molecules, 20-50% are phosphorylated in serine, thus representing a meaningful fraction of the total biosynthetic pro-uPA. Although the sites of phosphorylation have not yet been determined, at least two such sites must exist; in fact plasmin cleavage of phosphorylated single chain pro-uPA yields a two chain uPA in which both chains are phosphorylated. A specific function for pro-uPA phosphorylation has not yet been identified; however, it is tempting to speculate that, as in many other cases, phosphorylation may affect the activity of the enzyme, its response to inhibitors or the conversion of pro-uPA zymogen to active two-chain uPA. This would represent an additional way of regulating extracellular proteolysis, an important pathway involved in both intra- and extravascular phenomena like fibrinolysis, cell migration and invasiveness.  相似文献   

18.
19.
Three different types of experiments are presented in this paper, the results of which converge to indicate that the viral src protein associates with and modulates the activity and/or the specificity of a serine/threonine protein kinase. Firstly, a 60-kDa protein from extracts of FR3T3 rat fibroblasts transformed by wild-type Rous sarcoma virus (SRD-FR3T3) is shown to be immunoprecipitated with a monoclonal antibody (mAb) raised against bacterially produced pp60v-src, the mAb327 [Lipsich, L. A., Lewis, A. J. & Brugge, J. S. (1983) J. Virol. 48, 352-360] and to be phosphorylated in vitro at serine/threonine/tyrosine residues, in the ratio 25:53:22. Under the same experimental conditions, the pp60c-src protein immunoprecipitated with mAb327 from extracts of NIH c-src overexpresser cells is phosphorylated exclusively on tyrosine residues. Secondly, the results of immunoprecipitation experiments using a tumor-bearing rabbit (TBR) serum and reported in an earlier work [David-Pfeuty, T. & Hovanessian, A. (1984) Eur. J. Biochem. 140, 325-342], together with those reported here, suggest that the TBR-immunoprecipitated pp60v-src coprecipitates with a cellular protein related to the 60-kDa subunit of the Ca2+/calmodulin protein kinase II from brain. Finally, partially purified preparations of pp60v-src, but not of pp60c-src, are shown to contain a Ca2+/calmodulin-dependent protein kinase activity that phosphorylates a 52-kDa protein substrate.  相似文献   

20.
Reticuloendotheliosis virus strain T (Rev-T) is a highly oncogenic replication-defective retrovirus which contains the oncogene v-rel. It is thought that Rev-T arose when a virus similar to Rev-A, the helper virus of Rev-T, infected a turkey and recombined with c-rel from that turkey. There is one large c-rel locus in the turkey genome which contains all of the sequences homologous to v-rel (K. C. Wilhelmsen and H. M. Temin, J. Virol. 49:521-529, 1984). We have sequenced v-rel and its flanking sequences, each of the regions of the c-rel locus from turkey that are homologous to v-rel and their flanking sequences, and the coding sequence for env and part of pol of Rev-A. The v-rel coding sequences can be translated into a 503-amino acid env-v-rel-out-of-frame-env fusion polypeptide. We have not detected any sequences in the Los Alamos or University of California-San Diego data bases that are more significantly related to the amino acid or nucleic acid sequence of v-rel than to the randomized sequence of v-rel. Comparison of Rev-A, Rev-T, and c-rel indicates that the v-rel sequences may have been transduced from the c-rel (turkey) locus by a novel mechanism. There are sequences in Rev-A and c-rel that are similar to splicing signals, indicating that the 5' virus-rel junction of Rev-T may have been formed by cellular RNA splicing machinery. Eight presumed introns have presumably been spliced out of c-rel to generate v-rel. There are also short imperfect regions of homology between sequences at the boundaries of v-rel and sequences in Rev-A and c-rel (turkey), indicating that c-rel may have been transduced by homologous recombination. There are many differences between the amino acid sequences of the predicted translational products of v-rel and c-rel which may account for their difference in transformation potential. These sequence differences between v-rel and c-rel include 10 missense transitions, four missense transversions, and three places where Rev-T has a small in-frame deletion of sequences relative to c-rel. Most of the coding sequence differences between c-rel and v-rel are nonconservative amino acid changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号