首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 2′-O-methylation upon the base-stacking properties of dinucleoside monophosphates has been studied by circular dichroism measurements over the temperature range from ?20 °C to +80 °C at high and at low salt concentration of 13 2′-O-methyl derivatives in neutral aqueous solution. It is found that 2′-O methylation generally enhances the stacking propensity of dinucleoside monophosphates except for the dimers with adenine in the 3′-linked nucleoside, where the converse trend is observed. The influence of 2′-O-methylation upon the base-stacking property of a dimer correlates in part with the effect of a reduction in salt concentration, suggesting that the 2′-O-methyl group effects the stacking by displacing ions from the immediate environment of the dimer as well as by intramolecular steric effects. The dimers which exhibit an enhanced stacking due to the 2′-O-methylation are found in a larger than statistical abundance in yeast transfer RNA, whereas those showing a reduced stacking occur in minor abundance. These observations are discussed in relation to some current views on the role of modified nucleosides in the conformation of ribonucleic acids.  相似文献   

2.
3.
Two temperature-sensitive mutants of satellite phage P4 which do not synthesize P4 DNA at the nonpermissive temperature have been isolated. One of these phage is mutated in the P4 alpha gene. It complements a P4 delta mutant, but not a P4 alpha amber mutant; both mutants are phenotypically identical to alpha amber mutants in all properties studied. They synthesize P4 early proteins 1 and 2 as well as two additional P4-induced early proteins, 5 and 6, which are described here. P4 late proteins are not synthesized by these mutants and cannot be transactivated by helper phage P2. The mutants are unable to transactivate P2 late proteins from a P2 AB mutant. The P4 RNA polymerase activity which has been suggested to be involved in P4 DNA synthesis is not detected at the nonpermissive temperature. The P4 polymerase activity in partially purified extracts prepared from cells infected with the mutant at the permissive temperature is temperature sensitive. Reduced activity is found in vitro when these extracts are preincubated at 41 degrees C or assayed at temperatures higher than 37 degrees C. Thus, the P4 RNA polymerase is the product of the alpha gene. Temperature shift experiments show that the alpha gene product is required until late in the P4 cycle.  相似文献   

4.
The central part of bacteriophage T4 baseplate is built of several proteins which are present in only a few copies per phage particle. Only some of these minor baseplate components have been identified previously as distinct protein species by biochemical analysis. We have used the bacteriophage T7 RNA polymerase expression system to identify and overexpress the minor baseplate proteins. The products of genes 25, 26 and 51 were identified on the autoradiographs after selective labelling with [35]S methionine. The overexpression of gene 25 and 51 products was high enough to make possible undertaking their purification and studies of their properties.  相似文献   

5.
6.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

7.
8.
9.
10.
11.
12.
RNA ligase has been extensively purified by a new procedure in high yield from T4-infected Escherichia coli. The enzyme consists of a single polypeptide chain of molecular weight 47,000. It catalyzes the formation of a phosphodiester bond between a 5′-PO4-terminated oligonucleotide and a 3′-OH terminated oligonucleotide. The purified enzyme catalyzes both the intramolecular formation of single-stranded circles with longer oligonucleotides of the type pAp(Ap)nA?OH, where n is about 15 or greater and the intermolecular joining of pAp(Ap)3AOH (where the 5′-PO4-terminated oligonucleotide is short enough to prevent apposition of its 3′ and 5′ ends) to UpUpUOH when high concentrations of the 3′-OH-terminated acceptor oligonucleotide are present. Preparations of RNA ligase at all stages of purification show an unusual dependence of specific activity of the enzyme on the concentration of enzyme present in the assay. However, when care is taken to determine meaningful specific activities at each step, the ligase is found to be very stable during chromatography on various ion-exchange columns and may be purified by conventional techniques.  相似文献   

13.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号