首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
3β,6β‐Dihydroxyolean‐12‐en‐27‐oic acid ( 1 ) is a pentacyclic triterpenoid isolated from the rhizomes of Astilbe chinensis. To evaluate the in vivo antitumor potential and to elucidate its immunological mechanisms, effect of 1 on the growth of mouse‐transplantable tumors, and the immune response in naive and tumor‐bearing mice were investigated. The mice inoculated with mouse tumor cell lines were orally treated with 1 at the doses of 40, 60, and 80 mg/kg for 10 days. The effects of 1 on the growth of mouse‐transplantable S180 sarcoma and H22 hepatoma, splenocyte proliferation, cytotoxic T lymphocyte (CTL) activity, natural killer (NK) cell activity, and production of interleukin‐2 (IL‐2) from splenocytes in S180‐bearing mice were measured. Furthermore, the effect of 1 on 2,4‐dinitrofluorobenzene (DNFB)‐induced delayed‐type hypersensitivity (DTH) reactions and the sheep red blood cell (SRBC)‐induced antibody response in naive mice were also studied. Compound 1 could not only significantly inhibit the growth of mouse transplantable S180 sarcoma and H22 hepatoma, increase splenocytes proliferation, CTL and NK cell activity, and the level of IL‐2 secreted by splenocytes in tumor‐bearing mice, but also remarkably promote the DTH reaction and enhance anti‐SRBC antibody titers in naive mice. These results suggested that 1 could improve both cellular and humoral immune response, and could act as antitumor agent with immunomodulatory activity.  相似文献   

2.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

3.
Tuberculosis is still affecting millions of people worldwide, and new resistant strains of Mycobacterium tuberculosis are being found. It is therefore necessary to find new compounds for treatment. In this paper, we report the synthesis and in vitro testing of peptidyl β‐aminoboronic acids and β‐aminoboronates with anti‐tubercular activity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Central (hypothalamic) control of bone mass is proposed to be mediated through β2‐adrenergic receptors (β2‐ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both β‐ARs and α‐ARs, whether α‐ARs are expressed in human bone cells is controversial. The current study investigated the expression of α1‐AR and β2‐AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of α1B‐ and β2‐ARs was examined by RT‐PCR, immunofluorescence microscopy and Western blot (for α1B‐ARs). Proliferation in HOBs was assessed by 3H‐thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT‐PCR. RNA message for α1B‐ and β2‐ARs was expressed in HOBs and MG63 human osteosarcoma cells. α1B‐ and β2‐AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. α1B‐AR protein was identified in HOBs by Western blot. Both α1‐agonists and propranolol (β‐blocker) increased HOB replication but fenoterol, a β2‐agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The α1‐agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of α1B‐ARs in HOBs. These data indicate that both α1‐ARs and β2‐ARs are present and functional in HOBs. In addition to β2‐ARs, α1‐ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system. J. Cell. Physiol. 220: 267–275, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

6.
Metabolic syndrome is marked by perturbed glucocorticoid (GC) signaling, systemic inflammation, and altered immune status. Dehydroepiandrosterone (DHEA), a major circulating adrenal steroid and dietary supplement, demonstrates antiobesity, anti‐inflammatory, GC‐opposing and immune‐modulating activity when administered to rodents. However, plasma DHEA levels failed to correlate with metabolic syndrome and oral replacement therapy provided only mild benefits to patients. Androstene‐3β,7β,17β‐triol (β‐AET) an anti‐inflammatory metabolite of DHEA, also exhibits GC‐opposing and immune‐modulating activity when administered to rodents. We hypothesized a role for β‐AET in obesity. We now report that plasma levels of β‐AET positively correlate with BMI in healthy men and women. Together with previous studies, the observations reported here may suggest a compensatory role for β‐AET in preventing the development of metabolic syndrome. The β‐AET structural core may provide the basis for novel pharmaceuticals to treat this disease.  相似文献   

7.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

8.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   

9.
10.
11.
Fibrillation of β‐amyloid is recognized as a key process leading to the development of Alzheimer's disease. Small peptides called β‐sheet breakers were found to inhibit the process of β‐amyloid fibrillation and to dissolve amyloid fibrils in vitro, in vivo, and in cell culture studies [1,2]. The mechanism by which peptide inhibition takes place remains elusive and a detailed model needs to be established. Here, we present new insights into the possible role of consecutive Phe residues, present in the structure of β‐sheet breakers, supported by the results obtained by means of MD simulations. We performed a 30‐ns MD of two β‐sheet breakers: iAβ5 (LPFFD) and iAβ6 (LPFFFD) which have two and three consecutive Phe residues, respectively. We have found that Phe rings in these peptides tend to form stacked conformations. For one of the peptides – iAβ6 – the calculated electrostatic contribution to free energy of one of the conformers with three rings stacked (c2) is significantly lower than that corresponding to the unstacked one (c1), two rings stacked (c0) and second conformer with three rings stacked (c3). This may favor the interaction of the c2 conformer with the target on amyloid fibril. We hypothesize that the mechanism of inhibition of amyloidogenesis by β‐sheet breaker involves competition among π‐stacked Phe residues of the inhibitor and π‐stacking within the β‐amyloid fibril. iAβ6 may be a promising candidate for a lead compound of amyloidogenesis inhibitors. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

13.
β‐arrestin 1 and 2 (also known as arrestin 2 and 3) are homologous adaptor proteins that regulate seven‐transmembrane receptor trafficking and signalling. Other proteins with predicted ‘arrestin‐like’ structural domains but lacking sequence homology have been indicated to function like β‐arrestin in receptor regulation. We demonstrate that β‐arrestin2 is the primary adaptor that rapidly binds agonist‐activated β2 adrenergic receptors (β2ARs) and promotes clathrin‐dependent internalization, E3 ligase Nedd4 recruitment and ubiquitin‐dependent lysosomal degradation of the receptor. The arrestin‐domain‐containing (ARRDC) proteins 2, 3 and 4 are secondary adaptors recruited to internalized β2AR–Nedd4 complexes on endosomes and do not affect the adaptor roles of β‐arrestin2. Rather, the role of ARRDC proteins is to traffic Nedd4–β2AR complexes to a subpopulation of early endosomes.  相似文献   

14.
15.
16.
In search for new drugs lowering arterial blood pressure, which could be applied in anti‐hypertensive therapy, research concerning agents blocking of renin‐angiotensin‐aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8–13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N‐methylleucyl‐β‐hydroxy‐γ‐amino acids at the P2‐P1' position: 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐7‐(3‐nitroguanidino)‐heptanoic acid (AHGHA), 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐5‐phenyl‐pentanoic acid (AHPPA) or 4‐[N‐(N‐methylleucyl)‐amino]‐8‐benzyloxycarbonylamino‐3‐hydroxyoctanoic acid (AAHOA). The previously listed synthetic β‐hydroxy‐γ‐amino acids constitute pseudodipeptidic units that correspond to the P1‐P1' position of the inhibitor molecule. An unnatural amino acid, 4‐methoxyphenylalanin (Phe(4‐OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6‐aminohexanoic acid (ε‐Ahx‐Iaa) at the P2'‐P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10?6‐10?9 M. The compound Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa proved to be the most active (IC50 = 1.05 × 10?9 M). The compounds Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐Ahx‐Iaa and Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa are resistant to chymotrypsin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Young Kee Kang    Byung Jin Byun 《Biopolymers》2012,97(12):1018-1025
The γ‐peptide β‐turn structures have been designed computationally by the combination of chirospecific γ 2 , 3 ‐residues of 2‐(aminomethyl)cyclohexanecarboxylic acid (γAmc6) with a cyclohexyl constraint on the Cα?Cβ bond using density functional methods in water. The chirospecific γAmc6 dipeptide with the (2S,3S)‐(2R,3R) configurations forms a stable turn structure in water, resembling a type II′ turn of α‐peptides, which can be used as a β‐turn motif in β‐hairpins of Ala‐based α‐peptides. The γAmc6 dipeptide with homochiral (2S,3S)‐(2S,3S) configurations but different cyclohexyl puckerings shows the capability to be incorporated into one of two β‐turn motifs of gramicidin S. The overall structure of this gramicidin S analogue is quite similar to the native gramicidin S with the same patterns and geometries of hydrogen bonds. Our calculated results and the recently observed results may imply the wider applicability of chirospecific γ‐peptides with a cyclohexyl constraint on the backbone to form various peptide foldamers. © 2012 Wiley Periodicals, Inc. Biopolymers 97:1018–1025, 2012.  相似文献   

18.
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295  相似文献   

19.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号