共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
Galectin-7 was initially described as a marker of epithelial differentiation expressed in the stratified epithelium of various tissues. Like other members of the galectin family, its expression level is often significantly altered in cancer cells. In breast cancer, its expression is significantly augmented in aggressive molecular subtypes, most notably in estrogen receptor-negative tumors and in cell lines with a basal-like phenotype. Studies using experimental mouse models have further shown high expression of galectin-7 was sufficient to increase the metastatic behavior of poorly metastatic breast cancer cells, rendering them more resistant to apoptosis. This expression pattern in breast cancer cells is unexpected because galectin-7 was originally identified as a p53-induced gene. To address this paradox, we have examined the molecular mechanisms regulating galectin-7 in breast cancer cells. Our results showed that transfection of breast cancer cells with expression vectors encoding mutant p53 was sufficient to induce galectin-7 at both mRNA and protein levels. Doxorubicin treatment of breast cancer cells harboring a mutant p53 also induced galectin-7. This induction was specific since knockdown of endogenous mutant p53 inhibited doxorubicin-induced galectin-7 expression. The p53-induced galectin-7 expression in breast cancer cells correlated with increased NF-κB activity and was inhibited by NF-κB inhibitors, indicating that the ability of mutant p53 to induce galectin-7 was dependent on NF-κB activity. The implication of NF-κB was further supported by data showing that NF-κB bound to the endogenous galectin-7 promoter and that TNFα-induced galectin-7 expression was abolished by NF-κB inhibitors. Taken together, our data provide an explanation to the observed high galectin-7 expression levels in cancer cells and suggest that galectin-7 could be part of a common pathway used by mutant p53 to promote cancer progression. 相似文献
4.
5.
6.
7.
Investigation of Gallic Acid Induced Anticancer Effect in Human Breast Carcinoma MCF‐7 Cells 下载免费PDF全文
Ke Wang Xue Zhu Kai Zhang Ling Zhu Fanfan Zhou 《Journal of biochemical and molecular toxicology》2014,28(9):387-393
Gallic acid (GA), a polyhydroxylphenolic compound abundantly distributed in plants, fruits, and foods, has been reported to have various biological activities including an anticancer effect. In this study, we extensively investigated the anticancer effect of GA in human breast carcinoma MCF‐7 cells. Our study indicated that treatment with GA resulted in inhibition of proliferation and induction of apoptosis in MCF‐7 cells. Then, the molecular mechanism of GA's apoptotic action in MCF‐7 cells was further investigated. The results revealed that GA induced apoptosis by triggering the extrinsic or Fas/FasL pathway as well as the intrinsic or mitochondrial pathway. Furthermore, the apoptotic signaling induced by GA was amplified by cross‐link between the two pathways. Taken together, our findings may be useful for understanding the mechanism of action of GA on breast cancer cells and provide new insights into the possible application of such compound and its derivatives in breast cancer therapy. 相似文献
8.
乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)是ATP结合盒转运蛋白超家族成员之一,其通过主动外排化疗药物如米托蒽醌、托泊替康和甲氨蝶呤,进而介导肿瘤化疗耐受. 最近有研究发现,在野生型p53(wild type p53, wt-p53)低表达的乳腺癌细胞系MCF-7中,外源性wt-p53通过抑制核转录因子-κB (nuclear factor-κB, NF-κB)的活性进而抑制BCRP的表达,但其详细的分子机制有待进一步阐明. 本研究选用p53缺失的骨肉瘤细胞系Saos-2,通过瞬时转染技术发现,wt-p53可以激活BCRP的表达,而突变型p53的激活作用消失;报告基因试验显示,wt-p53可以上调BCRP启动子活性;通过生物信息学软件MatInspector对BCRP启动子区进行预测,未发现p53结合元件;同时,通过转染IκB抑制Saos-2细胞中NF-κB的活性后发现,Saos-2细胞中NF-κB活性越低,p53对BCRP启动子的激活作用越弱甚至完全消失. 上述结果提示,p53对Saos-2细胞中BCRP的激活作用是NF-κB依赖性的. 相似文献
9.
Shiu‐Wen Huang I‐Tsu Chyuan Ching Shiue Meng‐Chieh Yu Ya‐Fen Hsu Ming‐Jen Hsu 《Journal of cellular and molecular medicine》2020,24(2):1822-1836
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death. 相似文献
10.
11.
Halofuginone‐induced autophagy suppresses the migration and invasion of MCF‐7 cells via regulation of STMN1 and p53 下载免费PDF全文
Xiaojing Xia Lei Wang Xiaojian Zhang Shan Wang Lianchen Lei Likun Cheng Yanzhao Xu Yawei Sun Bolin Hang Gaiping Zhang YueYu Bai JianHe Hu 《Journal of cellular biochemistry》2018,119(5):4009-4020
12.
13.
14.
15.
16.
17.
18.
19.
20.
Chunmei Wang Runzi Qi Nan Li Zhengxin Wang Huazhang An Qinghua Zhang Yizhi Yu Xuetao Cao 《The Journal of biological chemistry》2009,284(24):16183-16190
Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC.Notch signaling determines cell fate and affects cell proliferation, differentiation, and apoptosis during cell development (1). As a highly conserved family, Notch coordinates a signaling cascade present in all animal species studied to date (2). Mammals have four Notch receptors that bind five different ligands, among which Notch1 signaling functions in many physiological and pathophysiological processes of numerous cell types, and its dysfunction results in a variety of developmental defects, including embryonic lethality and adult disorders. For example, the Notch1/Jagged1 signaling pathway is activated during liver regeneration and is potentially contributing to signals affecting hepatocyte growth (3, 4). Inducible inactivation of Notch1 has been shown to cause nodular regenerative hyperplasia in mouse liver (5). These studies suggest that Notch1 signaling may be involved in the liver functions and the pathogenesis of liver diseases. Our previous study demonstrated that Notch1 signaling could suppress the growth of human hepatocellular carcinoma (HCC)4 cells by arresting the cell cycle and inducing apoptosis (6). However, the underlying molecular mechanisms remain to be fully understood.p53, an important tumor suppressor gene, is involved in cell cycle arrest and cellular apoptosis. Its activity is mostly regulated by complex networks of post-translational modifications, including phosphorylation, ubiquitination, and proteasome degradation. One protein that is essential for determining p53 stability is Mdm2 (mouse double minute protein 2) (7). Mdm2, a nuclear phosphoprotein and an E3 ubiquitin ligase, binds to p53 and ubiquitinates p53, leading to proteosome degradation of p53 (8). Another important mechanism of p53 stability is related to its phosphorylation status, which is Mdm2-dependent or Mdm2-independent (9). As to the regulation of p53 by Notch1, there are controversial reports that Notch1 activation increased p53 expression in neural progenitor cells (10); however, suppression of p53 by Notch signaling was also well established in lymphomagenesis (11). We also reported that Notch1 signaling significantly up-regulated p53 expression in SMMC7721 HCC cells (6); however, the molecular mechanisms remained unclear and needed to be further characterized.Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of a superfamily of cell death-inducing ligands, induces apoptosis in a broad range of transformed cells and tumor cells but has little or no effect on normal cells (12). Therefore, TRAIL has been regarded as a potential drug for cancer therapy (12, 13). However, several kinds of cancer, including HCC, are not sensitive to soluble TRAIL treatment (14). HCC accounts for 80–90% of liver cancers and is one of the most prevalent carcinomas throughout the world, especially in Africa and Asia. Thus, it is worthwhile to find a new strategy to overcome the resistance of HCC cells to TRAIL-induced apoptosis.Considering that Notch1 signaling up-regulates p53 and induces apoptosis of HCC cells and that there are no reports to date that address the relationship between Notch1 signaling and TRAIL-induced apoptosis, in this study, we investigated whether and how Notch1 signaling could sensitize HCC cells to TRAIL-induced apoptosis. We demonstrate that Notch1 signaling up-regulates p53 expression by inhibiting proteasome degradation via, at least in part, suppressing the phosphatidylinositol 3-kinase/Akt/Hdm2 pathway. In addition, we here report that Notch1 signaling enhances DR5 (death receptor 5) expression in a p53-dependent manner, and DR5 contributes, at least in part, to the enhancement of TRAIL-induced apoptosis by Notch1 signaling. Accordingly, Notch1 signaling sensitizes HCC cells to TRAIL-induced apoptosis. 相似文献