首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we examined the mechanisms underlying the cytotoxicity of pitavastatin, a new statin, and we compared the in vitro potencies of muscle cytotoxicity using a prototypic embryonal rhabdomyosarcoma cell line (RD cells), a typical side effect of statins and compared the cholesterol-lowering effects of statins using Hep G2 hepatoma cells. Pitavastatin reduced the number of viable cells and caused caspase-9 and -3/7 activation in a time- and concentration-dependent manner. The comparison of cytotoxities of statins showed that statins significantly reduced cell viability and markedly enhanced activity of caspase-3/7 in concentration-dependent manner. On the other hand, the effects of hydrophilic statins, pravastatin, rosuvastatin were very weak. The rank order of cytotoxicity was cerivastatin > simvastatin acid> fluvastatin > atorvastatin > lovastatin acid > pitavastatin > rosuvastatin, pravastatin. Statin-induced cytotoxicity is associated with these partition coefficients. On the other hand, the cholesterol-lowering effect of statins did not correlate with these partition coefficients and cytotoxicity. Thus, it is necessary to consider the association between risk of myopathy and cholesterol-lowering effect of a statin for precise use of statins.  相似文献   

2.
Recent reports have suggested that statins induce cell death in certain epithelial cancers and that patients taking statins to reduce cholesterol levels possess lower cancer incidence. However, little is known about the mechanisms of action of different statins or the effects of these statins in gynaecological malignancies. The apoptotic potential of two lipophilic statins (lovastatin and simvastatin) and one hydrophilic statin (pravastatin) was assessed in cancer cell lines (ovarian, endometrial and cervical) and primary cultured cancerous and normal tissues. Cell viability was studied by MTS assays and apoptosis was confirmed by Western blotting of PARP and flow cytometry. The expressions of key apoptotic cascade proteins were analysed. Our results demonstrate that both lovastatin and simvastatin, but not pravastatin, selectively induced cell death in dose‐ and time‐dependent manner in ovarian, endometrial and cervical cancers. Little or no toxicity was observed with any statin on normal cells. Lipophilic statins induced activation of caspase‐8 and ‐9; BID cleavage, cytochrome C release and PARP cleavage. Statin‐sensitive cancers expressed high levels of HMG‐CoA reductase compared with resistant cultures. The effect of lipophilic statins was dependent on inhibition of enzymatic activity of HMG‐CoA reductase since mevalonate pre‐incubation almost completely abrogated the apoptotic effect. Moreover, the apoptotic effect involved the inhibition of synthesis of geranylgeranyl pyrophosphate rather than farnesyl pyrophosphate. In conclusion, lipophilic but not hydrophilic statins induce cell death through activation of extrinsic and intrinsic apoptotic cascades in cancerous cells from the human female genital tract, which express high levels of HMG‐CoA reductase. These results promote further investigation in the use of lipophilic statins as anticancer agents in gynaecological malignancies.  相似文献   

3.
Statins are among the most commonly prescribed drugs for the treatment of high blood cholesterol. Myotoxicity of statins in certain individuals is often a severe side effect leading to withdrawal. Using C2C12 and H9c2 cells, both exhibiting characteristics of skeletal muscle cells, we addressed whether resveratrol (RSV) can prevent statin toxicity. Statins decreased cell viability in a dose and time‐dependent manner. Among the five statins tested, atorvastatin, simvastatin, lovastatin, pravastatin, and fluvastatin, simvastatin is the most toxic one. Simvastatin at 10 µM caused about 65% loss of metabolic activity as measured by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays in C2C12 cells or H9c2 cells. Inhibition of metabolic activity correlates with an increase in caspase activity. RSV was found to protect H9c2 cells from simvastatin‐induced activation of caspase‐3/7. However, such protection was not found in C2C12 cells. This cell type‐dependent effect of RSV adds to the complexity in muscle cell toxicity of statins.  相似文献   

4.
Gap junction communication is an essential component in the mechanosensitive response of tenocytes. However, little is known about direct mechanoregulation of gap junction turnover and permeability. The present study tests the hypothesis that mechanical loading alters gap junction communication between tenocyte within tendon fascicles. Viable tenocytes within rat tail tendon fasicles were labelled with calcein-AM and subjected to a fluorescent loss induced by photobleaching (FLIP) protocol. A designated target cell within a row of tenocytes was continuously photobleached at 100% laser power whilst recording the fluorescent intensity of neighbouring cells. A mathematical compartment model was developed to estimate the intercellular communication between tenocytes based upon the experimental FLIP data. This produced a permeability parameter, k, which quantifies the degree of functioning gap functions between cells as confirmed by the complete inhibition of FLIP by the inhibitor 18α-glycyrrhentic acid. The application of 1N static tensile load for 10?min had no effect on gap junction communication. However, when loading was increased to 1?h, there was a statistically significant reduction in gap junction permeability. This coincided with suppression of connexin 43 protein expression in loaded samples as determined by confocal immunofluorescence. However, there was an upregulation of connexin 43 mRNA. These findings demonstrate that tenocytes remodel their gap junctions in response to alterations in mechanical loading with a complex mechanosensitive mechanism of breakdown and remodelling. This is therefore the first study to show that tenocyte gap junctions are not only important in transmitting mechanically activated signals but that mechanical loading directly regulates gap junction permeability.  相似文献   

5.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti‐tumour properties. The underlying mechanisms by which statins‐induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti‐tumour mechanisms of a lipophilic statin, lovastatin, in MCF‐7 breast cancer cells. Lovastatin inhibited cell proliferation and induced cell apoptosis. Lovastatin caused p21 elevation while reduced cyclin D1 and survivin levels. Lovastatin also increased p53 phosphorylation, acetylation and its reporter activities. Results from chromatin immunoprecipitation analysis showed that p53 binding to the survivin promoter region was increased, while Sp1 binding to the region was decreased, in MCF‐7 cells after lovastatin exposure. These actions were associated with liver kinase B1 (LKB1), AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38MAPK) activation. Lovastatin's enhancing effects on p53 activation, p21 elevation and survivin reduction were significantly reduced in the presence of p38MAPK signalling inhibitor. Furthermore, LKB1‐AMPK signalling blockade abrogated lovastatin‐induced p38MAPK and p53 phosphorylation. Together these results suggest that lovastatin may activate LKB1‐AMPK‐p38MAPK‐p53‐survivin cascade to cause MCF‐7 cell death. The present study establishes, at least in part, the signalling cascade by which lovastatin induces breast cancer cell death.  相似文献   

6.
Hydroxmethylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) lower serum cholesterol but exhibit pleiotropic biological effects that are difficult to ascribe solely to cholesterol depletion. Here, we investigated the effect of lovastatin on protein prenylation and cell signaling. We show that high concentrations (50 μM) of lovastatin inhibit Ras, Rho, and Rap prenylation but that therapeutic levels of lovastatin (50 nM to 500 nM) do not. In contrast, depletion of cellular cholesterol by therapeutic levels of lovastatin increased Ras GTP loading and mitogen-activated protein kinase (MAPK) activation in human umbilical vein endothelial cells and rodent fibroblasts. Elevated Ras signaling was not seen in statin-treated cells if cholesterol levels were maintained by supplementation. Activation of Ras-MAPK signaling was a consequence of, and dependent on, activation of phospholipase D2 (PLD2). Expression of dominant interfering PLD2 or biochemical inhibition of PLD2 abrogated Ras and MAPK activation induced by lovastatin. In contrast, ectopic expression of wild-type PLD2 enhanced Ras and MAPK activation in response to therapeutic levels of lovastatin. Statin-induced cholesterol depletion also modestly activated the epidermal growth factor receptor (EGFR), resulting in downregulation of EGFR expression. These results suggest that statins modulate key cell signaling pathways as a direct consequence of cholesterol depletion and identify the EGFR-PLD2-Ras-MAPK axis as an important statin target.  相似文献   

7.
We have previously reported that protein lipidation in the form of palmitoylation and farnesylation is critical for the production of Abeta (amyloid beta-peptide), the dimerization of beta-secretase and its trafficking into cholesterol-rich microdomains. As statins influence these lipid modifications in addition to their effects on cholesterol biosynthesis, we have investigated the effects of lovastatin and SIMVA (simvastatin) at a range of concentrations chosen to distinguish different cellular effects on Abeta production and beta-secretase structure and its localization in bHEK cells [HEK-293 cells (human embryonic kidney cells) transfected with the Asp-2 gene plus a polyhistidine coding tag] cells. We have compared the changes brought about by statins with those brought about by the palmitoylation inhibitor cerulenin and the farnesyltransferase inhibitor CVFM (Cys-Val-Phe-Met). The statin-mediated reduction in Abeta production correlated with an inhibition of beta-secretase dimerization into its more active form at all concentrations of statin investigated. These effects were reversed by the administration of mevalonate, showing that these effects were mediated via 3-hydroxy-3-methylglutaryl-CoA-dependent pathways. At low (1 microM) statin concentrations, reduction in Abeta production and inhibition of beta-secretase dimerization were mediated by inhibition of isoprenoid synthesis. At high (>10 microM) concentrations of statins, inhibition of beta-secretase palmitoylation occurred, which we demonstrated to be regulated by intracellular cholesterol levels. There was also a concomitant concentration-dependent change in beta-secretase subcellular trafficking. Significantly, Abeta release from cells was markedly higher at 50 microM SIMVA than at 1 microM, whereas these concentrations resulted in similar reductions in total Abeta production, suggesting that low-dose statins may be more beneficial than high doses for the therapeutic treatment of Alzheimer's disease.  相似文献   

8.
BackgroundTendinopathy or tendon injuries can affect many people, causing a huge impact on their movements and maintaining standing posture. Treatment options include physiotherapy, anti-inflammatory drugs, and alternative medicine. The use of physiotherapy or anti-inflammatory drugs may cause some side effects like pain and liver failure, respectively, therefore, alternative medicine will be a better choice.MethodTenocytes were isolated from sheep Achilles tendon and used in Alamar blue assay to assess the metabolic activity, proliferation, and viability of tenocytes over 24 hrs. and 48 hrs., using natural and synthetic products [i.e., olive oil, oleic acid, corn oil, Inula viscosa oil, Inula viscosa extract, Nigella sativa oil, naproxen sodium, and paracetamol and LED photobiomodulation]. Furthermore, tenocytes viability was assessed by FDA/PI stain. For migration and healing of a wound, the scratch assay was used.ResultsAlamar blue assay over 24 hrs. showed that Nigella sativa oil increased the metabolic activity, proliferation, and viability of tenocytes significantly, while Alamar blue over 48 hrs. showed that oleic acid, LED, and their combination increased these parameters for tenocytes significantly. Olive oil increased the viability of tenocytes significantly using FDA/PI stains. Scratch assay revealed that Inula viscosa oil, Inula viscosa extract, and paracetamol increased tenocyte migration and healing significantly.ConclusionNigella sativa oil, olive oil, oleic acid, Inula viscosa oil, and Inula viscosa extract may be used as an alternative therapy for tendinopathy with less side effects.  相似文献   

9.
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.  相似文献   

10.
Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step‐wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human‐induced PSCs and their application in cell therapy have long been challenging. PSC‐derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.  相似文献   

11.

Background

Cholesterol management drugs known as statins are widely used and often well tolerated; however, a variety of muscle-related side effects can arise. These adverse events (AEs) can have serious impact, and form a significant barrier to therapy adherence. Surveillance of post-marketing AEs is of vital importance to understand real-world AEs and reporting differences between individual statin drugs. We conducted a review of post-approval muscle and tendon AE reports in association with statin use, to assess differences within the drug class.

Methods

We analyzed all case reports from the FDA AE Reporting System (AERS) database linking muscle-related AEs to statin use (07/01/2005–03/31/2011). Drugs examined were: atorvastatin, simvastatin, lovastatin, pravastatin, rosuvastatin, and fluvastatin.

Results

Relative risk rates for rosuvastatin were consistently higher than other statins. Atorvastatin and simvastatin showed intermediate risks, while pravastatin and lovastatin appeared to have the lowest risk rates. Relative risk of muscle-related AEs, therefore, approximately tracked with per milligram LDL-lowering potency, with fluvastatin an apparent exception. Incorporating all muscle categories, rates for atorvastatin, simvastatin, pravastatin, and lovastatin were, respectively, 55%, 26%, 17%, and 7.5% as high, as rosuvastatin, approximately tracking per milligram potency (Rosuvastatin>Atorvastatin>Simvastatin>Pravastatin≈Lovastatin) and comporting with findings of other studies. Relative potency, therefore, appears to be a fundamental predictor of muscle-related AE risk, with fluvastatin, the least potent statin, an apparent exception (risk 74% vs rosuvastatin).

Interpretation

AE reporting rates differed strikingly for drugs within the statin class, with relative reporting aligning substantially with potency. The data presented in this report offer important reference points for the selection of statins for cholesterol management in general and, especially, for the rechallenge of patients who have experienced muscle-related AEs (for whom agents of lower expected potency should be preferred).  相似文献   

12.
Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2–ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2–ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.  相似文献   

13.
Statins are potent drugs, used as lipid‐lowering agents in cardiovascular diseases. Hepatotoxicity is one of the serious adverse effects of statins, and the exact mechanism of hepatotoxicity is not yet clear. In this study, the cytotoxic effects of the most commonly used statins, that is, atorvastatin, lovastatin, and simvastatin toward isolated rat hepatocytes, were evaluated. Markers, such as cell death, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial membrane potential, and the amount of reduced and oxidized glutathione in the statin‐treated hepatocytes, were investigated. It was found that the statins caused cytotoxicity toward rat hepatocytes dose dependently. An elevation in ROS formation, accompanied by a significant amount of lipid peroxidation and mitochondrial depolarization, was observed. Cellular glutathione reservoirs were decreased, and a significant amount of oxidized glutathione was formed. This study suggests that the adverse effect of statins toward hepatocytes is mediated through oxidative stress and the hepatocytes mitochondria play an important role in the statin‐induced toxicity. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:287‐294, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21485  相似文献   

14.
Biotechnological production and applications of statins   总被引:1,自引:0,他引:1  
Statins are a group of extremely successful drugs that lower cholesterol levels in blood; decreasing the risk of heath attack or stroke. In recent years, statins have also been reported to have other biological activities and numerous potential therapeutic uses. Natural statins are lovastatin and compactin, while pravastatin is derived from the latter by biotransformation. Simvastatin, the second leading statin in the market, is a lovastatin semisynthetic derivative. Lovastatin is mainly produced by Aspergillus terreus strains, and compactin by Penicillium citrinum. Lovastatin and compactin are produced industrially by liquid submerged fermentation, but can also be produced by the emerging technology of solid-state fermentation, that displays some advantages. Advances in the biochemistry and genetics of lovastatin have allowed the development of new methods for the production of simvastatin. This lovastatin derivative can be efficiently synthesized from monacolin J (lovastatin without the side chain) by a process that uses the Aspergillus terreus enzyme acyltransferase LovD. In a different approach, A. terreus was engineered, using combinational biosynthesis on gene lovF, so that the resulting hybrid polyketide synthase is able to in vivo synthesize 2,2-dimethylbutyrate (the side chain of simvastatin). The resulting transformant strains can produce simvastatin (instead of lovastatin) by direct fermentation.  相似文献   

15.

Background

Amniotic epithelial cells (AEC) have potential applications in cell-based therapy. Thus far their ability to differentiate into tenocytes has not been investigated although a cell source providing a large supply of tenocytes remains a priority target of regenerative medicine in order to respond to the poor self-repair capability of adult tendons. Starting from this premise, the present research has been designed firstly to verify whether the co-culture with adult primary tenocytes could be exploited in order to induce tenogenic differentiation in AEC, as previously demonstrated in mesenchymal stem cells. Since the co-culture systems inducing cell differentiation takes advantage of specific soluble paracrine factors released by tenocytes, the research has been then addressed to study whether the co-culture could be improved by making use of the different cell populations present within tendon explants or of the high regenerative properties of fetal derived cell/tissue.

Methodology/Principal Findings

Freshly isolated AEC, obtained from ovine fetuses at mid-gestation, were co-incubated with explanted tendons or primary tenocytes obtained from fetal or adult calcaneal tendons. The morphological and functional analysis indicated that AEC possessed tenogenic differentiation potential. However, only AEC exposed to fetal-derived cell/tissues developed in vitro tendon-like three dimensional structures with an expression profile of matrix (COL1 and THSB4) and mesenchymal/tendon related genes (TNM, OCN and SCXB) similar to that recorded in native ovine tendons. The tendon-like structures displayed high levels of organization as documented by the cell morphology, the newly deposited matrix enriched in COL1 and widespread expression of gap junction proteins (Connexin 32 and 43).

Conclusions/Significance

The co-culture system improves its efficiency in promoting AEC differentiation by exploiting the inductive tenogenic soluble factors released by fetal tendon cells or explants. The co-cultural system can be proposed as a low cost and easy technique to engineer tendon for biological study and cell therapy approach.  相似文献   

16.
17.
Wei H  Fang L  Song J  Chatterjee S 《FEBS letters》2005,579(5):1272-1278
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are known to inhibit leukocyte recruitment to endothelium but the mechanism is less understood. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an endothelial junction protein involved in leukocyte diapedesis. We hypothesize that in endothelial cells, statins may well recruit PECAM-1 to exert their inhibitory effect on leukocyte trans-endothelial migration (TEM). In lovastatin-treated resting human umbilical vein endothelial cells (HUVECs), increased levels of mRNA and protein of PECAM-1 as well as its bio-synthesis (all approximately 2-fold) were observed by real-time PCR, Western blotting and 35S-labeled methionine incorporation assay, respectively. Moreover, in lovastatin treated resting cells as well as TNF-alpha activated endothelial cells, unanimously decreased Triton X-100 insoluble and soluble PECAM-1 ratio was observed. Such changes were accompanied by decreased TEM of U-937 cells (a promonocyte cell line). All lovastatin's effects were abrogated by mevalonic acid. In resting HUVECs, geranylgeranyl pyrophosphate (GGPP), but not farnesyl pyrophosphate (FPP) (both are isoprenoid intermediates in the cholesterol biosynthesis pathway) compromised the effect of lovastatin on PECAM-1 expression, whereas C3 toxin, an inhibitor of small G proteins, exerted statin-like effect. CONCLUSION: Statin-reduced endothelial permeability could be attributed to altered intracellular distribution of PECAM-1 in endothelial cells. We speculate that lovastatin regulates PECAM-1 expression in HUVECs through the mevalonate-GGPP pathway by inhibiting of Rho small GTPase.  相似文献   

18.
Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.  相似文献   

19.
Previous studies suggest that treatment with statins reduce beta amyloid (Abeta) deposition in brains of mouse models of Alzheimer's disease (AD) and may reduce the prevalence of AD in humans. Since lipophilicity influences the biological efficacy of statins, we compared the effects of lovastatin, a lipophilic statin, to effects of the hydrophilic pravastatin on amyloid processing and inflammatory responses in brain. Three-month old TgCRND8 mice expressing mutant human amyloid precursor protein (mHuAPP) were treated daily with various doses of either statin. After 1 month, levels of cerebral soluble and fibrillar Abeta peptides, soluble sAPPalpha, and inflammatory cytokines were measured. Both statins caused dose-dependent reductions in total Abeta peptides with parallel increases in total sAPPalpha. At all doses, slightly greater effects were observed with lovastatin than with pravastatin. In contrast, only lovastatin significantly increased levels of IL-1beta and of TNFalpha in a dose-dependent manner. Lovastatin, but not pravastatin, decreased succinic dehydrogenase and increased lactate dehydrogenase activities in skeletal muscle and increased TUNEL staining in liver. Our data demonstrate that both statins shift the balance of APP processing from excessive beta-toward the normal alpha-cleavage while reducing the total amyloid burden in TgCRND8 brain and that lovastatin, but not pravastatin, potentiates cerebral inflammation and is associated with liver and muscle histotoxicity in these animals. These data show that pravastatin can reduce amyloid burden without potentiating inflammatory responses in brain and, therefore, may have a wider dose-range of safety than have lipophilic statins in the treatment or prevention of AD.  相似文献   

20.
Age‐related tendon degeneration (tendinosis) is characterized by a phenotypic change in which tenocytes display characteristics of fibrochondrocytes and mineralized fibrochondrocytes. As tendon degeneration has been noted in vivo in areas of decreased tendon vascularity, we hypothesized that hypoxia is responsible for the development of the tendinosis phenotype, and that these effects are more pronounced in aged tenocytes. Hypoxic (1% O2) culture of aged, tendinotic, and young human tenocytes resulted in a mineralized fibrochondrocyte phenotype in aged tenocytes, and a fibrochondrocyte phenotype in young and tendinotic tenocytes. Investigation of the molecular mechanism responsible for this phenotype change revealed that the fibrochondrocyte phenotype in aged tenocytes occurs with decreased Rac1 activity in response to hypoxia. In young hypoxic tenocytes, however, the fibrochondrocyte phenotype occurs with concomitant decreased Rac1 activity coupled with increased RhoA activity. Using pharmacologic and adenoviral manipulation, we confirmed that these hypoxic effects on the tenocyte phenotype are linked directly to the activity of RhoA/Rac1 GTPase in in vitro human cell culture and tendon explants. These results demonstrate that hypoxia drives tenocyte phenotypic changes, and provide a molecular insight into the development of human tendinosis that occurs with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号