首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Yersinia protein tyrosine phosphatase (PTP) YopH is translocated into eukaryotic cells by a type III secretion system that requires bacterial–host cell contact. YopH is composed of two modular effector domains: a substrate-binding domain located in the N-terminal region (residues 1–130) and a PTP catalytic domain located in the C-terminal region (residues 206–468). Previous studies have shown that YopH selectively targets tyrosine-phosphorylated proteins of approximate molecular weight 120 kDa (p120) and 55 kDa (p55) in murine macrophages. It has been demonstrated that p120 actually represents two tyrosine-phosphorylated target proteins, Cas and Fyb. We used the substrate-binding domain of YopH to affinity purify tyrosine-phosphorylated target proteins from lysates of J774A.1 macrophages. Protein microsequencing identified p55 as murine SKAP-HOM. Direct interaction between SKAP-HOM and a catalytically inactive form of YopH was demonstrated in vitro and in macrophages. In addition, we obtained evidence that SKAP-HOM is tyrosine phosphorylated in response to macrophage cell adhesion and that it forms a signalling complex with Fyb. We suggest that dephosphorylation of SKAP-HOM and Fyb by YopH allows yersiniae to interfere with a novel adhesion-regulated signal transduction pathway in macrophages.  相似文献   

2.
The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form.  相似文献   

3.
An X  Debnath G  Guo X  Liu S  Lux SE  Baines A  Gratzer W  Mohandas N 《Biochemistry》2005,44(31):10681-10688
The ternary complex of spectrin, F-actin, and protein 4.1R defines the erythrocyte membrane skeletal network, which governs the stability and elasticity of the membrane. It has been shown that both 4.1R and actin bind to the N-terminal region (residues 1-301) of the spectrin beta chain, which contains two calponin homology domains, designated CH1 and CH2. Here, we show that 4.1R also binds to the separate CH1 and CH2 domains. Unexpectedly, truncation of the CH2 domain by its 20 amino acids, corresponding to its N-terminal alpha helix, was found to greatly enhance its binding to 4.1R. The intact N terminus and the CH1 but not the CH2 domain bind to F-actin, but again, deletion of the first 20 amino acids of the latter exposes an actin-binding activity. As expected, the polypeptide 1-301 inhibits the binding of spectrin dimer to actin and formation of the spectrin-actin-4.1R ternary complex in vitro. Furthermore, the binding of 4.1R to 1-301 is greatly enhanced by PIP(2), implying the existence of a regulatory switch in the cell.  相似文献   

4.
Recent studies on the conventional motor protein kinesin have identified a putative cargo-binding domain (residues 827-906) within the heavy chain. To identify possible cargo proteins which bind to this kinesin domain, we employed a yeast two-hybrid assay. A human brain cDNA library was screened, using as bait residues 814-963 of human ubiquitous kinesin heavy chain. This screen initially identified synaptosome-associated protein of 25 kDa (SNAP25) as a kinesin-binding protein. Subsequently, synaptosome-associated protein of 23 kDa (SNAP23), the nonneuronal homologue of SNAP25, was also confirmed to interact with kinesin. The sites of interaction, determined from in vivo and in vitro assays, are the N-terminus of SNAP25 (residues 1-84) and the cargo-binding domain of kinesin heavy chain (residues 814-907). Both regions are composed almost entirely of heptad repeats, suggesting the interaction between heavy chain and SNAP25 is that of a coiled-coil. The observation that SNAP23 also binds to residues 814-907 of heavy chain would indicate that the minimal kinesin-binding domain of SNAP23 and SNAP25 is most likely residues 45-84 (SNAP25 numbering), a heptad-repeat region in both proteins. The major binding site for kinesin light chain in kinesin heavy chain was mapped to residues 789-813 at the C-terminal end of the heavy chain stalk domain. Weak binding of light chain was also detected at the N-terminus of the heavy chain tail domain (residues 814-854). In support of separate binding sites on heavy chain for light chain and SNAPs, a complex of heavy and light chains was observed to interact with SNAP25 and SNAP23.  相似文献   

5.
Neurofibromin is the product of the NF1 gene, whose alteration is responsible for the pathogenesis of neurofibromatosis type 1 (NF1), one of the most frequent genetic disorders in man. It acts as a GTPase activating protein (GAP) on Ras; based on homology to p120GAP, a segment spanning 250-400 aa and termed GAP-related domain (NF1GRD; 25-40 kDa) has been shown to be responsible for GAP activity and represents the only functionally defined segment of neurofibromin. Missense mutations found in NF1 patients map to NF1GRD, underscoring its importance for pathogenesis. X-ray crystallographic analysis of a proteolytically treated catalytic fragment of NF1GRD comprising residues 1198-1530 (NF1-333) of human neurofibromin reveals NF1GRD as a helical protein that resembles the corresponding fragment derived from p120GAP (GAP-334). A central domain (NF1c) containing all residues conserved among RasGAPs is coupled to an extra domain (NF1ex), which despite very limited sequence homology is surprisingly similar to the corresponding part of GAP-334. Numerous point mutations found in NF1 patients or derived from genetic screening protocols can be analysed on the basis of the three-dimensional structural model, which also allows identification of the site where structural changes in a differentially spliced isoform are to be expected. Based on the structure of the complex between Ras and GAP-334 described earlier, a model of the NF1GRD-Ras complex is proposed which is used to discuss the strikingly different properties of the Ras-p120GAP and Ras-neurofibromin interactions.  相似文献   

6.
7.
We have purified a 14 kDa fragment of the 30 kDa binding protein for insulin-like growth factors (IGFs) from BRL-3A cell conditioned medium. The fragment binds IGF-I and IGF-II with similar specificity to the 30 kDa binding protein, but with lower affinity. It corresponds to the carboxy terminus of the native binding protein (residues 148-270), and is thought to arise by proteolysis. We infer that this region of the native binding protein contains, at least in part, the IGF binding domain.  相似文献   

8.
We have previously purified a novel GTPase-activating protein (GAP) for Ras which is immunologically distinct from the known Ras GAPs, p120GAP and neurofibromin (M. Maekawa, S. Nakamura, and S. Hattori, J. Biol. Chem. 268:22948-22952, 1993). On the basis of the partial amino acid sequence, we have obtained a cDNA which encodes the novel Ras GAP. The predicted protein consists of 847 amino acids whose calculated molecular mass, 96,369 Da, is close to the apparent molecular mass of the novel Ras GAP, 100 kDa. The amino acid sequence shows a high degree of similarity to the entire sequence of the Drosophila melanogaster Gap1 gene. When the catalytic domain of the novel GAP was compared with that of Drosophila Gap1, p120GAP, and neurofibromin, the highest degree of similarity was again observed with Gap1. Thus, we designated this gene Gap1m, a mammalian counterpart of the Drosophila Gap1 gene. Expression of Gap1m was relatively high in brain, placenta, and kidney tissues, and it was expressed at low levels in other tissues. A recombinant protein consisting of glutathione-S-transferase and the GAP-related domain of Gap1m stimulated GTPase of normal Ras but not that of Ras having valine at the 12th residue. Expression of the same region in Saccharomyces cerevisiae suppressed the ira2- phenotype. In addition to the GAP catalytic domain, Gap1m has two domains with sequence closely related to those of the phospholipid-binding domain of synaptotagmin and a region with similarity to the unique domain of Btk tyrosine kinase. These results clearly show that Gap1m is a novel Ras GAP molecule of mammalian cells.  相似文献   

9.
The amino acid sequences of most of the CH1, CH2 and CH3 domains of IgG Zie, a myeloma protein belonging to the IgG2 subclass, are presented. These data make possible a comparison of the sequences of residues 253-446 of all four subclasses of immunoglobulins: these residues make up almost the entire Fc regions. A comparison can also be made of the CH1 domain of IgG1 Eu and the CH1 domain of IgG2 Zie. Earlier sequence analyses of the Fc regions of subclass 1 and 3 proteins, and parts of the Fc regions of subclass 2 and 4 proteins showed that about 95% of these sequences were identical. The extended comparisons made possible by the data presented here show that this very high degree of identity is maintained throughout the four subclasses. Similarly, the CH1 domains of gamma 1 and gamma 2 chains were found to have about 93% sequence identity. It is unlikely that the few single amino acid changes within the constant region domains can account for the marked differences between subclasses observed in the region domains can account for the marked differences between subclasses observed in the biological effector functions of immunoglobulin Fc regions, especially since most of the changes are highly conservative. Rather, it seems probable that these functional differences are caused by conformational differences between the subgroups, which result from sequence differences in the hinge regions.  相似文献   

10.
Cyanovirin-N (CV-N) is a potent 11 kDa HIV-inactivating protein that binds with high affinity to the HIV surface envelope protein gp120. A double mutant P51S/S52P of CV-N was engineered by swapping two critical hinge-region residues Pro51 and Ser52. This mutant has biochemical and biophysical characteristics equivalent to the wild-type CV-N and its structure resembles that of wild-type CV-N. However, the mutant shows a different orientation in the hinge region that connects two domains of the protein. The observation that this double mutant crystallizes under a wide variety of conditions challenges some of the current hypotheses on domain swapping and on the role of hinge-region proline residues in domain orientation. The current structure contributes to the understanding of domain swapping in cyanovirins, permitting rational design of domain-swapped CV-N mutants.  相似文献   

11.
A previously unidentified protein with an apparent molecular mass of 120 kDa was detected in some Streptococcus mutans strains including the natural isolate strain Z1. This protein was likely involved in the cold-agglutination of the strain, since a correlation between this phenotype and expression of the 120 kDa protein was found. We have applied random mutagenesis by in vitro transposition with the Himar1 minitransposon and isolated three cold-agglutination-negative mutants of this strain from approximately 2,000 mutants screened. A 2.5 kb chromosomal fragment flanking the minitransposon in one of the three mutants was amplified by PCR-based chromosome walking and the minitransposon insertion in the other two mutants occurred also within the same region. Nucleotide sequencing of the region revealed a 1617 nt open reading frame specifying a putative protein of 538 amino acid residues with a calculated molecular weight of 57,192. The deduced eight amino acid sequence following a putative signal sequence completely coincided with the N-terminal octapeptide sequence of the 120 kDa protein determined by the Edman degradation. Therefore, the 1617 nt gene unexpectedly encoded the 120 kDa protein from S. mutans. Interestingly, this gene encoded a collagen adhesin homologue. In vitro mutagenesis using the Himar1 minitransposon was successfully applied to S. mutans.  相似文献   

12.
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

13.
Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is negatively controlled by its NTD (N-terminal domain) that lies between amino acids 1 and 124. This domain contains a leucine-rich sequence, called NHB1 (N-terminal homology box 1; residues 11-30), which tethers Nrf1 to the ER (endoplasmic reticulum). Electrophoresis resolved Nrf1 into two major bands of approx. 95 and 120 kDa. The 120-kDa Nrf1 form represents a glycosylated protein that was present exclusively in the ER and was converted into a substantially smaller polypeptide upon digestion with either peptide:N-glycosidase F or endoglycosidase H. By contrast, the 95-kDa Nrf1 form did not appear to be glycosylated and was present primarily in the nucleus. NHB1 and its adjacent residues conform to the classic tripartite signal peptide sequence, comprising n-, h- and c-regions. The h-region (residues 11-22), but neither the n-region (residues 1-10) nor the c-region (residues 23-30), is required to direct Nrf1 to the ER. Targeting Nrf1 to the ER is necessary to generate the 120-kDa glycosylated protein. The n-region and c-region are required for correct membrane orientation of Nrf1, as deletion of residues 2-10 or 23-30 greatly increased its association with the ER and the extent to which it was glycosylated. The NHB1 does not contain a signal peptidase cleavage site, indicating that it serves as an ER anchor sequence. Wild-type Nrf1 is glycosylated through its Asn/Ser/Thr-rich domain, between amino acids 296 and 403, and this modification was not observed in an Nrf1(Delta299-400) mutant. Glycosylation of Nrf1 was not necessary to retain it in the ER.  相似文献   

14.
15.
We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Co-immunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-alpha. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-kappaB and increased NF-kappaB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS(1-723)) was found to inhibit NF-kappaB activation by TNF-alpha. Co-precipitation and co-immunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK.  相似文献   

16.
Recombinant forms of human perlecan domain I were secreted as proteoglycans by stably transfected human 293 cells. A recombinant domain I-only proteoglycan spanned the 95- to 265-kDa region in SDS-PAGE and appeared to be 160 kDa in denaturing gel filtration. Its glycosaminoglycan (GAG) content was approximately 67% heparan sulfate, and its average GAG chain size of 20 kDa suggested that the true molecular mass of the proteoglycan was 90 kDa. Domain I with enhanced green fluorescent protein fused to its C-terminus had an apparent molecular mass of 210-220 kDa and contained approximately 100% heparan sulfate. Its average GAG chain size (also 20 kDa) suggested a true molecular mass of 117 kDa for this proteoglycan. Its sulfate content of 53-77 mol SO2-4 per mole of protein indicated the presence of one sulfate group per 4-7 GAG sugar residues.  相似文献   

17.
H M Lu  S Lory 《The EMBO journal》1996,15(2):429-436
A number of Gram-negative bacteria, including Pseudomonas aeruginosa, actively secrete a subset of periplasmic proteins into their surrounding medium. The presence of a putative extracellular targeting signal within one such protein, exotoxin A, was investigated. A series of exotoxin A truncates, fused to beta-lactamase, was constructed. Hybrid proteins, which carry at their N- termini 120, 255, 355 or the entire 613 residues of the mature exotoxin A, were stable and were secreted into the extracellular medium. Hybrid proteins which carry residues 1-30 and 1-60 of the mature exotoxin A were unstable; however, they could be detected entirely within the cells after a short labeling period. A hybrid with beta-lactamase was constructed which carried only the N-terminal residues 1-3 and region 60-120 of exotoxin A. It was also secreted into the culture medium, suggesting that a specific 60 amino acid domain contains the necessary targeting information for translocation of exotoxin A across the outer membrane. The secretion of the hybrid proteins is independent of the passenger protein, since a similar exotoxin A-murine interleukin 4 hybrid protein was also secreted. The extracellular targeting signal between amino acids 60 and 120 is rich in anti-parallel beta-sheets. It has been shown previously to be involved in the interaction of the exotoxin A with the receptors of the eukaryotic cells. In the three- dimensional view, the targeting region is on the toxin surface where it is easily accessible to the components of the extracellular secretion machinery.  相似文献   

18.
J S Li  S P Tong    J R Wands 《Journal of virology》1996,70(9):6029-6035
Infection by human and animal hepadnaviruses displays remarkable host and tissue tropism. The infection cycle probably initiates with binding of the pre-S domain of viral envelope protein to surface receptors present on the hepatocyte. Three types of neutralizing monoclonal antibodies against duck hepatitis B virus (DHBV) have their binding sites clustered within residues 83 to 107 of the pre-S protein, suggesting that this region may constitute a major receptor binding site. A 170- or 180-kDa duck protein (p170 or gp180) which binds DHBV particles through this part of the pre-S sequence has been identified recently. Although the p170 binding protein is host (duck) specific, its distribution is not restricted to DHBV-infectible tissues. Using the pre-S protein fused to glutathione S-transferase and immobilized on Sepharose beads, we have now identified an additional binding protein with a size of 120 kDa (p120). p120 expression is restricted to the liver, kidney, and pancreas, the three major organs of DHBV replication. While optimal p170 binding requires an intact pre-S protein, binding to p120 occurs much more efficiently with a few N- or C-terminally truncated forms. The p120 binding site was mapped to residues 98 to 102 of the pre-S region, which overlaps with a cluster of known virus-neutralizing epitopes. Site-directed mutagenesis revealed residues 100 to 102 (Phe-Arg-Arg) as the critical p120 contact site; nonconservative substitution in any of the three positions abolished p120 binding. Double mutations at positions 100 to 102 markedly reduced DHBV infectivity in cell culture. Short pre-S peptides covering the clustered neutralizing epitopes (also p170 and p120 binding sites) reduced DHBV infectivity in primary duck hepatocyte cultures. Thus, p120 represents a candidate component of the DHBV receptor complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号