首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Low frequency electrorotation of fixed red blood cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Electrorotation of fixed red blood cells has been investigated in the frequency range between 16 Hz and 30 MHz. The rotation was studied as a function of electrolyte conductivity and surface charge density. Between 16 Hz and 1 kHz, fixed red blood cells undergo cofield rotation. The maximum of cofield rotation occurs between 30 and 70 Hz. The position of the maximum depends weakly on the bulk electrolyte conductivity and surface charge density. Below 3.5 mS/m, the cofield rotation peak is broadened and shifted to higher frequencies accompanied by a decrease of the rotation speed. Surface charge reduction leads to a decrease of the rotation speed in the low frequency range. These observations are consistent with the recently developed electroosmotic theory of low frequency electrorotation.  相似文献   

3.
The electrical and dielectric properties of Ba2+ and Ca2+ cross‐linked alginate hydrogel beads were studied by means of single‐particle electrorotation. The use of microstructured electrodes allowed the measurements to be performed over a wide range of medium conductivity from about 5 mS/m to 1 S/m. Within a conductivity range, the beads exhibited measurable electrorotation response at frequencies above 0.2 MHz with two well‐resolved co‐ and antifield peaks. With increasing medium conductivity, both peaks shifted toward higher frequency and their magnitudes decreased greatly. The results were analyzed using various dielectric models that consider the beads as homogeneous spheres with conductive loss and allow the complex rotational behavior of beads to be explained in terms of conductivity and permittivity of the hydrogel. The rotation spectra could be fitted very accurately by assuming (a) a linear relationship between the internal hydrogel conductivity and the medium conductivity, and (b) a broad internal dispersion of the hydrogel centered between 20 and 40 MHz. We attribute this dispersion to the relaxation of water bound to the polysaccharide matrix of the beads. The dielectric characterization of alginate hydrogels is of enormous interest for biotechnology and medicine, where alginate beads are widely used for immobilization of cells and enzymes, for drug delivery, and as microcarriers for cell cultivation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 227–237, 1999  相似文献   

4.
Dielectrophoresis and electrorotation are commonly used to measure dielectric properties and membrane electrical parameters of biological cells. We have derived quantitative relationships for several critical points, defined in Fig. A 1, which characterize the dielectrophoretic spectrum and the electrorotational spectrum of a cell, based on the single-shell model (Pauly, H., and H.P. Schwan, 1959. Z. Naturforsch. 14b:125-131; Sauer, F.A. 1985. Interactions between Electromagnetic Field and Cells. A. Chiabrera, C. Nicolini, and H.P. Schwan, editors. Plenum Publishing Corp., New York. 181-202). To test these equations and to obtain membrane electrical parameters, a technique which allowed simultaneous measurements of the dielectrophoresis and the electrorotation of single cells in the same chamber, was developed and applied to the study of Neurospora slime and the Myeloma Tib9 cell line. Membrane electrical parameters were determined by the dependence of the first critical frequency of dielectrophoresis (fct1) and the first characteristic frequency of electrorotation (fc1) on the conductivity of the suspending medium. Membrane conductances of Neurospora slime and Myeloma also were found to be 500 and 380 S m-2, respectively. Several observations indicate that these cells are more complex than that described by the single-shell model. First, the membrane capacities from fct1 (0.81 x 10(-2) and 1.55 x 10(-2) F m-2 for neurospora slime and Myeloma, respectively) were at least twice those derived from fc1. Second, the electrorotation spectrum of Myeloma cells deviated from the single-shell like behavior. These discrepancies could be eliminated by adapting a three-shell model (Furhr, G., J. Gimsa, and R. Glaser. 1985. Stud. Biophys. 108:149-164). Apparently, there was more than one membrane relaxation process which could influence the lower frequency region of the beta-dispersion. fct1 of Myeloma in a medium of given external conductivity were found to be similar for most cells, but for some a dramatically increased fct1 was recorded. Model analysis suggested that a decrease in the cytoplasmatic conductivity due to a drastic ion loss in a cell could cause this increase in fct1. Model analysis also suggested that the electrorotation spectrum in the counter-field rotation range and fc1 would be more sensitive to conductivity changes of the cytoplasmic fluid and to the influence of internal membranes than would fct1, although the latter would be sensitive to changes in capacitance of the cytoplasmic membranes.  相似文献   

5.
So far, electrorotation and its application to the determination of single cell properties have been limited to eukaryotes. Here an experimental system is described that allows the recording of electrorotation spectra of single bacterial cells. The small physical dimensions of the developed measuring chamber combined with a single frame video analysis made it possible to monitor the rotation of objects as small as bacteria by microscopical observation despite Brownian rotation and cellular movement. Thus physical properties of distinct organelles of E. coli could be simultaneously determined in vivo at frequencies between 1 kHz and 1 GHz. Experimental data were evaluated following a three-shell model of the cell. Electrical conductivities of cytoplasm and outer membrane were determined to 4.4 mS/cm and 25 microS/cm, respectively, that of the periplasmic space was found to increase with the square root of the medium ionic strength. Specific capacitances of inner and outer membrane amounted to 1.4 microF/cm2 and 0.26 microF/cm2, respectively, the thickness of the periplasm to about 50 nm. Heat treatment of the cells lead to a reduction of cytoplasmic conductivity to 0.9 mS/cm, probably caused by an efflux of ions through the permeabilized inner membrane.  相似文献   

6.
H Maier 《Biophysical journal》1997,73(3):1617-1626
The importance of surface conductivity to the frequency-dependent polarizability and the rotation of particles in circular electric fields (electrorotation) is emphasized by various theoretical and experimental investigations. Although surface conductivity seems to be naturally related to the ionic double layer, there is rare experimental evidence of a direct relationship. To highlight the role of surface charges in electrorotation, an apparatus was developed with a symmetrical three-electrode arrangement for field frequencies between 25 Hz and 80 MHz. The three-dimensional electrostatic field distribution between the electrodes was evaluated numerically. With this device, rotating, gradient, and homogeneous electric fields of defined precision and homogeneity could be applied to slightly conducting suspensions. Surface properties of monodisperse latex particles (O 9.67 microm), carrying weak acid groups, were characterized by suspension conductometric titration. This procedure determined the amount of carboxyl groups and showed that strong acid groups were missing on the surface of these particles. To obtain the electrophoretic mobility, the spheres were separated by free-flow electrophoresis, and the zeta-potential was calculated from these data. Single-particle rotation experiments on fractions of specified electrophoretic mobility were carried out at frequencies between 25 Hz and 20 MHz. By analyzing the pH dependence of the rotation velocity, it could be shown that the rotation rate is determined by surface charges, both at the peak in rotation rate near the Maxwell-Wagner frequency (MWF) and at low frequencies. The inversion of the rotation direction at the MWF peak for vanishing surface charges was demonstrated. An analytical model for the double layer and dissociation on a charged surface was developed that is valid for low and high zeta-potentials. This model could provide convincing evidence of the linear dependence of the MWF rotation velocity on surface charge.  相似文献   

7.
Suspension cultures of Daucus carota L. were established, and cells with embryogenic potential were separated from those without by density gradient centrifugation in Ficoll at different stages in the growth curve. In order to obtain information about the electrical properties of individual cells, electrorotation spectra of single plant cells from different fractions were measured before and after induction of embryogenesis. The data were analysed using models based on Maxwell–Wagner's theories of interfacial polarisation. It was found that the denser cells had a higher embryogenic potential, a darker appearance and a higher internal conductivity (>1 S m–1) than the less dense cells, which had less or no embryogenic potential and a lower internal conductivity (<1 S m–1). Modelling the dielectrophoretic (DEP) response on the basis of the electrorotation data suggested that separation of cells with high embryogenic potential may be achievable in the frequency range 1–10 MHz. Actual dielectrophoretic separation of cells with high embryogenic potential from suspensions in which embryogenesis had not yet been induced was achieved using steric as well as hyperlayer dielectrophoretic Field-Flow Fractionation (DEP-FFF).  相似文献   

8.
B Prüger  P Eppmann  E Donath    J Gimsa 《Biophysical journal》1997,72(3):1414-1424
Common dynamic light scattering (DLS) methods determine the size and zeta-potential of particles by analyzing the motion resulting from thermal noise or electrophoretic force. Dielectric particle spectroscopy by common microscopic electrorotation (ER) measures the frequency dependence of field-induced rotation of single particles to analyze their inherent dielectric structure. We propose a new technique, electrorotational light scattering (ERLS). It measures ER in a particle ensemble by a homodyne DLS setup. ER-induced particle rotation is extracted from the initial decorrelation of the intensity autocorrelation function (ACF) by a simple optical particle model. Human red blood cells were used as test particles, and changes of the characteristic frequency of membrane dispersion induced by the ionophore nystatin were monitored by ERLS. For untreated control cells, a rotation frequency of 2 s-1 was induced at the membrane peak frequency of 150 kHz and a field strength of 12 kV/m. This rotation led to a decorrelation of the ACF about 10 times steeper than that of the field free control. For deduction of ERLS frequency spectra, different criteria are discussed. Particle shape and additional field-induced motions like dielectrophoresis and particle-particle attraction do not significantly influence the criteria. For nystatin-treated cells, recalculation of dielectric cell properties revealed an ionophore-induced decrease in the internal conductivity. Although the absolute rotation speed and the rotation sense are not yet directly accessible, ERLS eliminates the tedious microscopic measurements. It offers computerized, statistically significant measurements of dielectric particle properties that are especially suitable for nonbiological applications, e.g., the study of colloidal particles.  相似文献   

9.
In this study, electrorotation spectra of individual cells (that is, frequency dependence of cell rotation speed) have been proved to yield information not only about the passive electric properties of cell constituents, but also about the presence of mobile charges within the plasma membrane being part of ion carrier transport systems. Experiments on human erythrocytes pretreated with the lipophilic anion dipicrylamine (DPA) gave convincing evidence that these artificial mobile charges adsorbed to the plasma membrane contributed significantly to the rotational spectrum at relatively low conductivity of the external medium (2–5 mS m−1). Theoretical integration of the mobile charge concept into the single-shell model (viewing the cell as a homogenous sphere surrounded by a membrane) led to a set of equations which predicted electrorotational behavior of DPA-treated cells in dependence on medium conductivity. The quantitative data on the partition and the transmembrane translocation rate of the DPA anion extracted from the experimental rotational spectra agreed well with the corresponding literature values. Received: 14 February 1996/Revised: 29 May 1996  相似文献   

10.
The measurement of the spin of cells in rotating high-frequency electric fields ('electrorotation') make possible the investigation of dielectric membrane properties of single cells. This method was applied to membrane permeability changes accompanying thrombocyte activation and compared with light-scattering data. Describing the dielectric behavior of platelets by a single-shell model and assuming a sufficiently low membrane conductivity of 1 X 10(-7) S/m we found for nonactivated platelets a membrane capacity of 5.5 mF/m2 and the conductivity of the internal medium was estimated to be 0.12 S/m. Upon activation, the electrorotation decreased continuously, with half-times in the range of few minutes. This could be explained assuming a 500-fold increase in membrane conductivity. The application of both local anesthetics and virostatics inhibited the decrease of electrorotation, as did hypertonic osmotic pressure. In all cases this was accompanied by inhibition of platelet aggregation. Hypotonic solutions induced self-aggregation and spontaneous loss of electrorotation. It was concluded that the increase in permeability of the granule membrane is a crucial step in the release reaction and that the electrorotation method is able to detect the incorporation of the granule membranes into the plasma membrane during activation. The advantage of this electrorotation method is that it enables measurements on a single-cell level, thus avoiding interactions between platelets.  相似文献   

11.
We have developed a new microsystem for fast, automated studies of reactions and kinetics of single cells with biochemical or pharmacological agents. A cell spins in an external rotating electric field and the frequency dependence characterises the passive dielectric properties of membrane and cytoplasm. We use a planar microelectrode chip with microchannel (easily covered with a removable slip) for the application of frequencies exceeding 250 MHz to determine cytoplasmic properties in low and high conductivity electrolyte solutions. The laser tweezers serve as a bearing system, rotation is induced by microelectrodes and rotation speed is recorded automatically. This opens up new possibilities in biotechnology, e.g. for drug screening as demonstrated by measuring the influence of ionomycin on the passive dielectric properties of T-lymphoma cells. Additionally, a possible infrared-induced long-term cell damage could be observed by electrorotation and is discussed.  相似文献   

12.
The separation of trophoblast cells from the maternal circulation could provide a valuable diagnostic tool for prenatal diagnosis of genetic abnormalities. This has been attempted using antibody methods, but due to non-specificity of the antibodies, maternal cell contamination remains a problem. We have investigated the potential of dielectrophoretic separation methods as a means of isolating trophoblast cells from mixed peripheral blood mononuclear cells. To determine the potential of this method the dielectric properties of trophoblast cells and mixed peripheral blood mononuclear cells were measured using dielectrophoretic crossover and single cell electrorotation methods. Both dielectrophoretic crossover data and electrorotation data gave an average specific membrane capacitance of the peripheral blood mononuclear cells of 11.5 mF m(-2). Trophoblast cells prepared using three different methods had a higher average specific membrane capacitance in the range 13-18 mF m(-2). The differences in capacitance between the cell types could be exploited as the basis of an AC electrokinetic-based system for the separation of trophoblast cells from peripheral blood mononuclear cells.  相似文献   

13.
It is shown that the dielectrophoretic behaviour (motion in non-uniform a.c. electric fields) of micro-organisms can conveniently and reproducibly be measured by monitoring the decrease in optical absorbance of a cell suspension as the cells are collected at a micro-electrode array. The dielectrophoretic behaviour, as a function of the frequency of the applied electric field and conductivity of the supporting solution, can be determined more quantitatively and rapidly than by methods so far described in the literature. Results are presented for Micrococcus lysodeikticus, Bacillus subtilis and Escherichia coli for the frequency range 20 Hz to 4 MHz and theoretical considerations are presented for the effect of solution conductivity. A value of 0.2 S/m has been derived for the effective conductivity of M. lysodeikticus.  相似文献   

14.
The frequency dependent dielectric properties of individual axolotl embryos (Ambystoma mexicanum) were investigated experimentally utilizing the technique of electrorotation. Individual axolotl embryos, immersed in low conductivity media, were subjected to a known frequency and fixed amplitude rotating AC electric field and the ensuing rotational motion of the embryo was monitored using a conventional optical microscope. None of the embryos in the pregastrulation or neurulation stages of development exhibited any rotational motion over the field frequency range (10 Hz-5 MHz). Over the same frequency range, the embryos in the gastrulation stage of development exhibited both co-field and counterfield rotation over different ranges of the applied field frequency. Typically, the counterfield rotation exhibited a peak in the rotation spectrum at similar 1 KHz while the co-field peak was located at similar 1-2 MHz. The rotational spectral data was analyzed using a multishelled spherical embryo model to determine the electrical character of embryos during the early development stages (Stages 5-16; i.e., 16 cell through open neural plate stages).  相似文献   

15.
The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete.  相似文献   

16.
The separation and purification of human blood cell subpopulations is an essential step in many biomedical applications. New dielectrophoretic fractionation methods have great potential for cell discrimination and manipulation, both for microscale diagnostic applications and for much larger scale clinical problems. To discover whether human leukocyte subpopulations might be separable by such methods, the dielectric characteristics of the four main leukocyte subpopulations, namely, B- and T-lymphocytes, monocytes, and granulocytes, were measured by electrorotation over the frequency range 1 kHz to 120 MHz. The subpopulations were derived from human peripheral blood by magnetically activated cell sorting (MACS) and sheep erythrocyte rosetting methods, and the quality of cell fractions was checked by flow cytometry. Mean specific membrane capacitance values were calculated from the electrorotation data as 10.5 (+/- 3.1), 12.6 (+/- 3.5), 15.3 (+/- 4.3), and 11.0 (+/- 3.2) mF/m2 for T- and B-lymphocytes, monocytes, and granulocytes, respectively, according to a single-shell dielectric model. In agreement with earlier findings, these values correlated with the richness of the surface morphologies of the different cell types, as revealed by scanning electron microscopy (SEM). The data reveal that dielectrophoretic cell sorters should have the ability to discriminate between, and to separate, leukocyte subpopulations under appropriate conditions.  相似文献   

17.
Electrorotation is a special dielectric spectroscopic technique capable of measuring the polarizability of single platelets. The rotational speed of the particles is recorded as a function of the frequency of the applied rotating electric field. As previously shown, the speed of electrorotation in the range of the first characteristic frequency (anti-field rotation) decreased upon activation and was correlated with [14C]serotonin release and an increase of the TMA-DPH-induced fluorescence. Diamide upon activation and was correlated with [14C]serotonin release and an increase of the TMA-DPH-induced fluorescence. Diamide incubation induced morphological changes in control platelets. These changes were accompanied by a shift of the first characteristic frequency of electrorotation toward higher values and a parallel increase of the anti-field rotation. This was explained by a decrease of membrane conductivity and by the changed polarizability of platelet interior due to the observed internal platelet structure changes. Diamide inhibited activation assessed by both electrorotation and TMA-DPH fluorescence in the case of all activators except the ionophore A 23187. Because diamide largely inhibited the A 23187-induced serotonin release, it was concluded that, despite the diamide treatment, the direct increase of cytoplasmic Ca2+ was still able to induce membrane conductivity changes accessible by electrorotation, but this did not complete the final release step of the activation process.  相似文献   

18.
Electrorotation is a non-invasive technique that is capable of detecting changes in the morphology and physicochemical properties of microorganisms. The first detailed electrorotation study of the egg (ovum) of a parasitic nematode, namely Ascaris suum is described to show that electrorotation can rapidly differentiate between fertilized and non-fertilized eggs. Support for this conclusion is by optical microscopy of egg morphology, and also from modelling of the electrorotational response. Modelling was used to determine differences in the dielectric properties of the unfertilized and fertilized eggs, and also to investigate specific differences in the spectra of fertilized eggs only, potentially reflecting embryogenesis. The potential of electrorotation as an investigative tool is shown, as undamaged eggs can be subjected to further non-destructive and destructive techniques, which could provide further insight into parasite biology and epidemiology.  相似文献   

19.
Summary Protoplasts ofValonia utricularis lacking the large central vacuole can be generated by cutting multi-nucleated, giant mother cells into small pieces after short exposure to air. When the protoplasmic content was squeezed out into sea water, irregularly shaped, green coloured aggregates were formed which changed into spherical protoplasts (radius of 20–60 m) after about 2 h. In these protoplasts the dense internal material (consisting mainly of organelles) was separated from the plasmalemma by a thin transparent layer containing a large number of small lipid vesicles. Cell wall regeneration occurred rapidly after protoplast formation. A central vacuole developed after about 10h. The regenerated cells continued to grow and were viable for several months. Electrorotation studies on 2–3 h old protoplasts at pH 7 in low- and fairly high-conductivity solutions showed one or two anti-field rotation peaks (depending on medium conductivity) between 10 kHz to 1 MHz as well as one cofield rotation peak between 10 MHz to 100 MHz. The rotation spectra could not be fitted on the basis of the single- (or multi-) shell model (i.e., by modelling the cells as a homogeneous sphere surrounded by one or more layers). However, fairly good agreement between the experimental data and theory could be obtained by assuming that the rotational behaviour of the protoplasts depends not only on passive electrical properties of the plasmalemma but is influenced by mobile charges of carrier transport systems and/or the dielectric behaviour of the aggregated chloroplasts and vesicles.Abbrevations ASW artificial sea water - DAPI 4,6-diamidino-2-phenylindole - DPH diphenyl-l,3,5-hexatriene - MSW Mediterranean sea water - S.D. standard deviation - S.E. standard error  相似文献   

20.
The dielectric properties of baby hamster kidney fibroblast (BHK(C-13)) cells have been measured using electrorotation before and after infection with herpes simplex virus type 1 (HSV-1). The dielectric properties and morphology of the cells were investigated as a function of time after infection. The mean specific capacitance of the uninfected cells was 2.0 microF/cm2, reducing to a value of 1. 5 microF/cm2 at 12 h after infection. This change was interpreted as arising from changes in the cell membrane morphology coupled with alterations in the composition of the cell membrane as infection progressed. The measured changes in the cell capacitance were correlated with alterations in cellular morphology determined from scanning electron microscope (SEM) images. Between 9 and 12 h after infection the internal permittivity of the cell exhibited a rapid change, reducing in value from 75epsilono to 58epsilono, which can be correlated with the generation of large numbers of Golgi-derived membrane vesicles and enveloped viral capsids. The data are discussed in relation to the known life cycle of HSV-1 and indicate that electrorotation can be used to observe dynamic changes in both the dielectric and morphological properties of virus-infected cells. Calculations of the dielectrophoretic spectrum of uninfected and infected cells have been performed, and the results show that cells in the two states could be separated using appropriate frequencies and electrode arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号