首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Early old‐field succession provides a model system for examining vegetation response to disturbance frequency and intensity within a manageable time scale. Disturbance frequency and intensity can interact with colonization and competition to influence relative abundance of earlier and later successional species and determine, respectively, how often and how far succession can be reset. We tested the joint effects of disturbance frequency and intensity on vegetation response (species richness, abundance, canopy structure) during the first six years of succession by clipping the dominant species (D) or all species (T) in spring and fall of each year (S), once per year in summer (Y1), each two years in summer (Y2), or each four years in summer (Y4). Vegetation response reflected disturbance effects on expansion of a later monospecific dominant perennial herb, Solidago altissima, and persistence of the early, richer flora of annuals. A more abundant and taller top Solidago canopy developed on plots clipped each 2 yr or less frequently. Plots clipped yearly or seasonally were richer, but had less abundant, shorter, and differently stratified canopy. Disturbance mediated the relative abundance of early and later successional species; however, frequency and intensity effects were not completely congruent. Persistence of a richer early successional flora increased through the most frequent disturbance (S), and was magnified by disturbance intensity. Disturbance as extreme as clipping all vegetation twice yearly did not cause a drop in species richness, but maintained the early successional community over the first six years of succession. We conclude that clipping disturbance influenced the rate of succession, but the early community could rebound through the range of disturbance frequency and intensity tested.  相似文献   

2.
Ecosystem Management in the Context of Large, Infrequent Disturbances   总被引:2,自引:1,他引:1  
Large, infrequent disturbances (LIDs) can have significant impacts yet seldom are included in management plans. Although this neglect may stem from relative unfamiliarity with a kind of event that rarely occurs in the experience or jurisdiction of individual managers, it may also reflect the assumption that LIDs are so large and powerful as to be beyond the ability of managers to affect. However, some LIDs can be affected by management, and for many of those that cannot be affected, the resilience or recovery of the system disrupted by the disturbance can be influenced to meet management goals. Such results can be achieved through advanced planning that allows for LIDs, whether caused by natural events, human activities, or a combination of the two. Management plans for LIDs may adopt a variety of goals, depending on the nature of the system and the nature of the anticipated disturbance regime. Managers can choose to influence (a) the system prior to the disturbance, (b) the disturbance itself, (c) the system after the disturbance, or (d) the recovery process. Prior to the disturbance, the system can be managed in ways that alter its vulnerability or change how it will respond to a disturbance. The disturbance can be managed through no action, preventive measures, or manipulations that can affect the intensity or frequency of the disturbance. Recovery efforts can focus on either managing the state of the system immediately after the disturbance or managing the ongoing process of recovery. This review of the management implications of LIDs suggests that management actions should be tailored to particular disturbance characteristics and management goals. Management actions should foster survival of residuals and spatial heterogeneity that promote the desired recovery pattern and process. Most importantly, however, management plans need to recognize LIDs and include the potential for such disturbances to occur. Received 14 July 1998; accepted 16 September 1998  相似文献   

3.
We studied the soil seed bank composition in four old fields of different ages, after abandonment from agriculture. Complete seed bank composition was assessed by direct seed separation from soil samples and identification to species. Most species found in the seed bank were not important in the present seral communities. Seed of the species that dominated the early succession were generally not found. Additionally, there were very few propagules rather than on the germination of in situ propagules. We suggest that pampean grasses evolved under that the course of post-agricultural succession will depend strongly on the pattern of arrival of exogenous propagules rather than the germination of in situ propagules. We suggest that pampean grasses evolved under disturbances of low intensity and/or a disturbance regime dominated by small gaps, in which open areas could be rapidly colonized from the edges and/or by remnant vegetative propagules. The changes produced by the introduction of agriculture triggered the invasion by exotic species adapted to the new disturbance regime.  相似文献   

4.
Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.  相似文献   

5.
Disentangling the ecological factors that contribute to the assembly of the microbial symbiont communities within eukaryotic hosts is an ongoing challenge. Broadly speaking, symbiont propagules arrive either from external sources in the environment or from internal sources within the same host individual. To understand the relative importance of these propagule sources to symbiont community assembly, we characterized symbiotic fungal endophyte communities within the roots of three species of beachgrass in a field experiment. We manipulated two aspects of the external environment, successional habitat and physical disturbance. To determine the role of internal sources of propagules for endophyte community assembly, we used beachgrass individuals with different pre‐existing endophyte communities. Endophyte species richness and community composition were characterized using culture‐based and next‐generation sequencing approaches. Our results showed that external propagule sources associated with successional habitat, but not disturbance, were particularly important for colonization of most endophytic taxa. In contrast, internal propagule sources played a minor role for most endophytic taxa but were important for colonization by the dominant taxon Microdochium bolleyi. Our findings highlight the power of manipulative field experiments to link symbiont community assembly to its underlying ecological processes, and to ultimately improve predictions of symbiont community assembly across environments.  相似文献   

6.
Aims The community succession theory is much debated in ecology. We studied succession on Zokor rodent mounds on the Tibetan Plateau to address several fundamental questions, among them: (i) During secondary succession, does the community composition converge towards one community state or multiple states depending on the initial colonization? (ii) Do mound communities located in different background communities exhibit different assembly trajectories?Methods In a sub-alpine meadow, we investigated a total of 80 mound communities at several successional stages in three different background communities resulting from different management histories and compared their changes in species composition. The distribution of plant communities over time was analyzed with quantitative classification and ordination methods. The co-occurrence patterns of species were evaluated at each successional stage, and the degree of convergence/divergence among communities was obtained by calculating two beta-diversity indices.Important findings During secondary succession, species richness of mound communities changed over time, and this change was dependent on the background community. Five life-form groups exhibited different dynamic patterns in species richness and plant cover. Community composition and the degree of species co-occurrence between communities increased over time since disturbance. There was much variation in species composition at earlier stages of succession, but communities on older mounds became more similar to each other and to their surrounding vegetation over the course of secondary succession. Post-disturbance succession of Zokor mound communities transitioned from 'multiple alternative states' to 'background-based deterministic community assembly' over time. Tradeoffs between competition and colonization, as well as the characteristics of different life-forms and mass effects within a limited species pool are the mechanisms responsible for convergence of mound communities.  相似文献   

7.
We review and compare well-studied examples of five large, infrequent disturbances (LIDs)—fire, hurricanes, tornadoes, volcanic eruptions, and floods—in terms of the physical processes involved, the damage patterns they create in forested landscapes, and the potential impacts of those patterns on subsequent forest development. Our examples include the 1988 Yellowstone fires, the 1938 New England hurricane, the 1985 Tionesta tornado, the 1980 eruption of Mount St. Helens, and the 1993 Mississippi floods. The resulting landscape patterns are strongly controlled by interactions between the specific disturbance, the abiotic environment (especially topography), and the composition and structure of the vegetation at the time of the disturbance. The very different natures of these interactions yield distinctive temporal and spatial patterns and demand that ecologists increase their knowledge of the physical characteristics of disturbance processes. Floods and fires can occur over a long period, whereas volcanic eruptions and wind-driven events often last for no more than a few hours or days. Tornadoes and floods produce linear patterns with sharp edges, but fires, volcanic eruptions, and hurricanes can affect broader areas, often with gradual transitions of disturbance intensity. In all cases, the evidence suggests that LIDs produce enduring legacies of physical and biological structure that influence ecosystem processes for decades or centuries. Received 14 July 1998; accepted 6 October 1998.  相似文献   

8.
Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region. However, how multiple disturbance regimes will interact with changing climate to alter the spatial distribution of species abundance remains unclear. We simulated such forest demographic processes using a forest landscape succession and disturbance model (LANDIS-II) parameterized with forest inventory data in the northeastern United States. Our study incorporated climate change under a high-emission future and disturbance regimes varying with gradients of intensities and spatial extents. The results suggest that disturbances catalyze changes in tree species abundance and composition under a changing climate, but the effects of disturbances differ by intensity and extent. Moderate disturbances and large extent disturbances have limited effects, while high-intensity disturbances accelerate changes by removing cohorts of mid- and late-successional species, creating opportunities for early-successional species. High-intensity disturbances result in the northern movement of early-successional species and the southern movement of late-successional species abundances. Our study is among the first to systematically investigate how disturbance extent and intensity interact to determine the spatial distribution of changes in species abundance and forest composition.  相似文献   

9.
Abstract. This study tested whether the frequency of flood disturbances was able to slow down or stabilize vegetation succession in former braided channels over a decade. According to the Patch Dynamics Concept and to succession theory, species richness and diversity should be high but stable in the frequently (40 days/year) flooded channel, and should change over time in the infrequently (1 day/year) flooded one. Within the frequently disturbed channel, composition of vegetation as well as species richness and diversity appeared stable through dynamic equilibrium over the decade. Only one zone, because of particular geomorphological features that decreased disturbance intensity, developed highest diversity and richness as expected from the Intermediate Disturbance Hypothesis. The highest disturbance effect decreased species richness and was related to a higher spatial heterogeneity of the substrate (number of grain-size classes). In the other zones, richness and diversity appeared to be lowest where disturbance frequency was lowest or disturbance intensity was highest. From 1981 to 1987, the infrequently flooded channel underwent succession, and species richness increased in the major part of the channel, whereas diversity increased only in its extreme parts.  相似文献   

10.
Disturbance is an integral part of every ecosystem, but humans are altering disturbance regimes in fundamental ways that can alter outcomes for ecosystem structure and function. Fortunately, advances in understanding ecosystem responses to natural disturbances can address the ecological consequences of the novel suite of disturbances now created by humans. Complex interactions among both natural and anthropogenic disturbances at many overlapping spatial and temporal scales can be examined across severity gradients. The gradient approach applies ecological tools to differential conditions of stability and fertility, degrees of biological legacy and rates of successional recovery and can help address modern concerns about socio‐economic consequences of disturbance and the sustainability of ecosystem services.  相似文献   

11.
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.  相似文献   

12.
Summary I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at intermediate levels of disturbance as discussed by Connell and Huston are interpreted in this context.  相似文献   

13.
Abstract. We tested the following hypotheses forthe first five years of a grassland succession: (a) community changes are mainly directional and related to time after disturbance ratherthanto environmental fluctuations; (b) rates of succession decrease over time, and (c) plant communities in different plots converge on a similar composition within five years of succession. We tested those hypotheses using a Principal Components Analysis applied to data from four successional plots established in successive y ears in a large cropland in the Inland Pampa, Argentina. Community changes were correlated to the age of the plots, and unrelated to rainfall variability, a major environmental variable in grasslands. Successional rates were constant over the five years, probably because of the continued dominance of different annuals; we conclude that successional rates depend on the life history of the dominant species rather than on any emergent community property. We found no evidence of convergence ordivergence; we concluded that the results of successional studies may depend on the temporal and spatial scale of observation.  相似文献   

14.
High-latitude, shelf Antarctic benthic communities are highly diversified and structured, dominated by benthic suspension feeders, and are subject to major natural disturbances. This study focuses on spatial patterns of the Antarctic benthos emphasizing the succession process after iceberg disturbance. For this purpose, underwater photographs (1 m2 each) from the southeastern Weddell Sea shelf (<300 m depth) were analyzed using techniques from the field of landscape ecology. Here, we examine measurements of spatial patterns (landscape indices) to describe changes in structural patterns along successional stages on these Antarctic benthic communities. We show a gradual separation from the early to older stages of succession based on sessile benthic cover area, size, shape, diversity, and interspersion and juxtaposition indices. Conceptually, the results describe a gradient from samples belonging to first stages of recovery with low cover area, low complexity of patch shape, small patch size, low diversity and patches poorly interspersed to samples from later stages with higher values of these indices. Cover area was the best predictor of recovery. We conclude that a variety of factors affect the observed successional sequences of Antarctic shelf benthic communities after iceberg disturbance, including the existence and dispersal abilities of propagules, growth rates, and competition between species. Overall, changes in the magnitude, frequency, and duration of disturbance regimes and alterations of ecosystem resilience pose major challenges for conservation of Antarctic benthos. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In this article, we develop a heuristic model of ecosystem-disturbance dynamics that illustrates a range of responses of disturbance impact to gradients of increasing disturbance extent, intensity, or duration. Three general kinds of response are identified and illustrated: (a) threshold response, (b) scale-independent response, and (c) continuous response. Threshold responses are those in which the response curve shows a discontinuity or a sudden change in slope along the axis of increasing disturbance extent, intensity, or duration. The response threshold occurs at a point where the force of the disturbance exceeds the capacity of internal mechanisms to resist disturbance, or where new mechanisms of recovery become involved. Within this conceptual framework, we find that some unusually large or intense disturbances, but not all, produce qualitatively different responses compared with similar disturbances of lesser magnitude. If disturbance impact does not increase with increasing disturbance extent, intensity, or duration, or if the response curve changes monotonically, then large disturbances are not qualitatively different from small ones. For example, jack pine tends to become reestablished after stand-replacing fire in boreal forests, regardless of fire size, because its serotinous cones provide an adequate seed source throughout the burned area. Thus, large fires are not qualitatively different from small fires in terms of jack pine reproduction. However, if disturbance impact does increase abruptly at some point with increasing disturbance extent, intensity, or duration, often because of thresholds in the capacity of internal mechanisms to resist or respond to disturbance impact, then large disturbances are qualitatively different from small ones, at least for some parameters of ecological response. For example, balsam fir and white cedar can recolonize a small burned patch of boreal forest in close proximity to surviving individuals of these species, but they will be eliminated from a large burn because of their susceptibility to fire-caused mortality and their inability to disperse their seeds over long distances. The conceptual framework presented here permits some new insights into the dynamics of natural systems and may provide a useful tool with which managers can assess the potential for catastrophic damages resulting from large, infrequent disturbances. Received 14 July 1998; accepted 29 September 1998  相似文献   

16.
Abstract. Many theories of forest succession imply that terrestrial plant community composition within a region tends to converge toward a climax community. That is, given similar climatic and edaphic conditions, succession at different sites within an area will lead to comparable species compositions, a pattern referred to as successional convergence. In this study, we examine changes in plant composition within forest canopy gaps over a 17-yr period to identify potential patterns of successional convergence and to ascertain the factors controlling the successional pathway. To do so, we: (1) sampled 36 forest canopy gaps in Hueston Woods Nature Preserve in 1977, 1981, 1985, 1989 and 1993, (2) evaluated changes in the similarity of gap composition over this period, and (3) examined gap composition in each year as a function of variables describing gap habitat, seed source proximity, and disturbance history. Results indicated an initial pattern of successional divergence, with gaps exhibiting increased dissimilarity over the first 10–12 years of succession. We attribute this initial period of divergence to the effects of differential seed inputs from edge individuals and heterogeneity of available light due to differences in gap size. Recent surveys, however, indicated that gap composition has become more similar as competition within gaps has become more intense. In these samples, gap composition is closely linked to site conditions, including slope, soil conditions, and site exposure. Finally, while these patterns may suggest equilibrium-oriented dynamics, non-equilibrium processes such as repeat disturbances are also evident at Hueston Woods and will likely play an important role in determining future successional pathways.  相似文献   

17.
Aim The objective of this study was to document succession from grassland thickets to rain forest, and to provide evidence for their potential as restoration tools. Location The Linganamakki region (State of Karnataka) of the Central Western Ghats of India. Method We selected thirty vegetation thickets ranging from 4 to 439 m2 in area in the vicinity of rain forest. The area of each small thicket was estimated as an oval using its maximum length and its maximum width. When the shape was irregular (mostly in large thickets) the limits of the thicket were mapped and the area calculated from the map. Plant species were identified, the number of individuals was estimated and their heights measured. Results There was a progression in the thickets from early to late successional species. Small thickets were characterized by ecotone species and savanna trees such as Catunaregam dumetorum. Savanna trees served as a nucleus for thicket formation. Colonizing species were mostly bird‐dispersed. As succession proceeded in larger thickets, the proportion of evergreen, late‐successional rain forest trees increased. The species composition of the large thickets differed depending on the species composition of reproductive adults in the nearby forested areas. The species within small thickets were also found in the large thickets. The nestedness in species composition suggested that species turnover was deterministic based on thicket size. Human disturbance (leaf and wood collection by the local populations) affected the species composition and the species–area relationship of thickets. Main conclusions Vegetation thickets are nodal centres for rain forest colonization within grasslands. They expand and replace savanna. Early successional bird‐dispersed species established around savanna trees followed by late‐successional rain forest trees dispersed from the nearby forest by birds. Restoration programmes that reproduce natural successional processes such as those observed in thickets will be more successful and less expensive than the methods currently being employed, where trees are individually planted in grassland. Wood harvesting is the only factor that prevents thicket growth and coalescence and hampers forest expansion.  相似文献   

18.
Aim Two main mechanisms may explain post‐disturbance species colonization patterns of early successional habitats such as those originated by wildfires. First, post‐disturbance colonization is not limited by the dispersal ability of the species to reach the newly created open areas and, secondly, colonization is limited by dispersal. Under the first hypothesis, we expect, at a regional scale, to find similar post‐disturbance communities to develop on recently burned sites. However, colonization limited by dispersal will lead to strong between‐site variations in species composition. Location To test these hypotheses, we studied the post‐fire colonization patterns of nine open‐habitat bird species in eight distantly located wildfires in the north‐eastern Iberian Peninsula. Methods We censused post‐fire bird composition by means of field transects and identified potential colonization sources from species–habitat suitability maps derived from atlas data. Results Our results showed strong significant differences in post‐fire species composition between burnt areas. Burnt areas located in areas with low probability of species presence before the fire event showed lower species occurrence and richness after the fire. Main conclusions These results do not support the idea that early successional stages and open habitats have a homogeneous community structure at regional scales and suggest that dispersal is a key constraint determining bird colonization of post‐fire habitats. Further attention should be paid to landscape heterogeneity as a key factor in determining population dynamics of open‐habitat species in the light of current and future land‐use changes in Mediterranean regions.  相似文献   

19.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

20.
A theoretical framework and conceptual model for temporal stability of forest tree-species composition was developed based on a synthesis of existing studies. The model pertains primarily to time periods of several tree lifetimes (several hundred to a few thousand years) at the neighborhood and stand spatial scales (0.01–10 ha), although a few extensions to the landscape scale are also made. The cusp catastrophe was chosen to illustrate compositional dynamics at the stand level for jack pine, northern hardwood, and white pine forests in the Great Lakes Region of the United States and for tropical rainforests in the northern Amazon basin. The models feature a response surface (degree of dominance by late-successional species) that depends on two variables: type of neighborhood effects of the dominant tree species and severity of disturbances. Neighborhood effects are processes that affect the chance of a species replacing itself at the time of disturbance (they can be positive, neutral, or negative) and are of two types: overstory–undestory effects, such as the presence of advanced reproduction; and disturbance-activated effects, such as serotinous seed rain. Disturbance severity is the proportion of trees killed during a disturbance. Interactions between neighborhood effects and disturbance severity can lead to either punctuated stability (dramatic but infrequent change in composition, in those forests dominated by species with positive neighborhood effects) or succession (continuous change, in those forests dominated by species with neutral-negative neighborhood effects). We propose that neighborhood effects are a major organizing factor in forest dynamics that provide a link across spatial scales between individual trees and disturbance/patch dynamics at the stand and landscape scales. Received 23 June 1998; accepted 16 December 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号