首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
中国科学院生物物理研究所视觉信息加工开放研究实验室专门从事视觉信息加工研究,这是当前神经科学的主要研究内容之一。本开放实验室接受国内外神经科学家开展视觉信息加工研究的申请,一经批准即予以资助,并安排在本实验室工作。本实验室着重开展下列内容的研究工作:1.视觉通路和神经回路的研究,包括传递和加工视觉信息,如深度、形状、运动、颜色等的神经通路和回路。2.神经递质、调质、受体和离子通道在视觉各层  相似文献   

2.
猫前内侧外上雪氏区对光流刺激的反应   总被引:2,自引:0,他引:2  
用螺旋刺激和平动刺激研究猫前内侧外上雪氏区(anteromedial lateral supra- sylvian area,AMLS)细胞加工光流信息的特性.结果表明,绝大多数神经元对这两种模式的光流刺激有显著的兴奋性反应和较高的方向选择性;同时发现,大脑皮层的一个视区有较多的细胞偏好旋转刺激.比较了两种关于视皮层加工光流信息机制的假说,并就此提出了自己的见解.  相似文献   

3.
识别其他生物体的运动对于个体的生存和社会交互都有极为重要的意义.本文首先基于生物运动识别的行为学、心理物理学、脑损伤和精神障碍研究介绍了生物运动识别的一些特性和影响因素;然后基于神经影像学、脑损伤和神经电生理学研究从视觉系统背腹侧双通路加工的角度,梳理了其信息加工机制的进展;最后对生物运动识别信息加工神经机制的研究方向提出了一点建议,并指出研究过程中需要注意的问题.  相似文献   

4.
借鉴行为经济学的研究成果,从信息获取、信息加工、信息输出和信息反馈阶段,系统分析了消费者食品安全风险认知偏差。基于江苏省消费者660份实地问卷调查数据,实证检验了消费者食品安全风险认知偏差。研究发现:消费者食品安全风险认知过程中存在严重的认知偏差,在信息获取阶段存在易记性偏差、易得性偏差和次序效用;在信息输出阶段存在过度自信;在信息加工阶段的简化信息处理过程中存在代表性启发、易得性启发和框架依赖;在信息反馈阶段存在损失厌恶。实证检验表明,消费者在信息输出阶段存在过度自信、信息加工阶段存在框架依赖,政府和企业食品安全风险沟通需要考虑到认知偏差的存在。  相似文献   

5.
瞳孔大小作为反映个体心理状态的窗口在社会互动中担任着重要的角色。除了非社会性信息(如刺激物理属性等因素)加工被发现影响瞳孔大小变化之外,越来越多的文献指出,瞳孔大小与个体社会信息加工之间也存在密切关系。基于此,本文系统综述了社会性刺激(如面孔和生物运动)本身以及社会性刺激含有的情绪信息对于瞳孔大小的影响,总结出瞳孔大小变化不仅可以反映个体对社会信息的感知,同样可以体现个体对更为复杂的社会互动情境的加工。这种社会性信息加工相关的瞳孔大小变化主要涉及个体的情绪唤醒和社会性注意过程。此外,对于自闭症谱系患者这一在社会互动中存在障碍的特殊群体,有关研究发现其对社会性刺激存在异常的瞳孔反应模式。这一特异性为进一步采用瞳孔指标对自闭症进行早期诊断提供了支持,具有重要的理论和实践意义。  相似文献   

6.
建立了一个探讨灵长类视皮层从V1区到MT区的运动信息加工原理的计算模型,这个过程的突出特征是视觉运动信息经过了从局部检测进步到整体感知。模型的第一层由用于抽提运动模式的局部速度以及结构性质的Reichardt运动检测器组成,进一步的加工是通过Boltzmann Machine神经网络来实现的。这种网络的学习算法具有局部更新的显著性质,在学习阶段,网络不断地修改联结权重以形成对于记录在网络的显单元上  相似文献   

7.
运动分析是视觉信息加工中的一个重要问题。本文利用Reichardt的相关型初级运动检测器(EMD)二维阵列可以有效地进行图象-背景相对运动分辨的特点,以及小波变换的频谱分析特性与人类视觉多频率通道特性相类似的性质,将EMD模型、小波变换和图象的塔式结构处理有机地结合起来,提出了一种类似视觉信息加工方式的新的运动分析算法。计算机仿真结果表明,算法能够较好地模拟视觉运动检测的功能,与Horn&Schunck算法[1]相比,提高了运动估计的速度与精度。  相似文献   

8.
以马来良姜(Alpinia mutica)花柱为研究对象,研究光对花柱卷曲运动和花药开裂的影响.结果表明下垂型花柱的两次运动在光下和暗处都能进行,花药的开裂也不受光照影响.上举型花柱的第一次运动在暗处时向下进行,在光下时向上进行;暗处的花药不开裂,光下的花药开裂.第二次运动的方向和幅度取决于第一次运动期间的光照条件,第一次运动在暗处时,若第二次也在暗处,第二次运动不会发生且花药不开裂;若在光处,花柱向上运动.第一次运动在光下时,第二次运动无论光下或暗处,都向下运动.本研究表明,在不同光照条件下,两种表型的花柱与花药状态的组合使柱头接触不到同花的花粉,从而保证了雌雄异位与雌雄异熟.尽管两种表型的花柱运动和花药开裂行为相似,却受不同的机制调控.  相似文献   

9.
中国科学院视觉信息加工开放研究实验室专门从事视觉信息加工研究,这是当前神经科学的主要研究内容之一。 本开放研究实验室接受国内外神经科学家开展视觉信息加工研究的申请,一经批准即予以资助,并安排在本实验室工作。本实验室着重开展下列内容的研究工作:  相似文献   

10.
优先流研究现状及发展趋势   总被引:24,自引:0,他引:24  
优先流是一种常见的土壤水分运动形式,它是土壤水运动机理研究由均质走向非均质领域的标志。但最初却没有真正的定义。综合介绍了目前国际上公认的土壤优先流定义、优先流多种表现形式及其重要特征。系统阐述了优先流的静态(内在)和动态(外在)影响因素、开展研究的基础理论以及实验研究技术,指出开展优先流研究可以有效及充分地解释早期水文学研究所困扰的不符合达西定律及对流一弥散方程等重大问题,但由于优先流运动过程具有非平衡性及区域特点,其自身类型较多,开展优先流研究同时加大了水文过程研究的难度及深度,所以长期以来没有得到充分重视,到目前为止,对于优先流运动机理尚未明确;开展优先流研究判定标准多样,但缺乏系统成形的判定标准;由于土壤本身就是异质性系统,对优先流研究需综合考虑尺度效应;虽然已有多种方法可以有效开展优先流研究,但缺少已获得国际标准认证的适用于具有快速环绕特性的优先流研究需要的现代仪器设备。同时还探讨了优先流研究的发展趋势。  相似文献   

11.
Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight.  相似文献   

12.
Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention.  相似文献   

13.
Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal''s accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.  相似文献   

14.
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment.  相似文献   

15.
Desert ants Cataglyphis fortis have been shown to be able to employ two mechanisms of distance estimation: exploiting both optic flow and proprioceptive information. This study aims at understanding possible interactions between the two possibly redundant mechanisms of distance estimation. We ask whether in Cataglyphis the obviously minor contribution of optic flow would increase or even take over completely if the ants were deprived of reliable proprioceptive information. In various experimental paradigms ants were subjected to passive horizontal displacements during which they perceived optic flow, but were prohibited from active locomotion. The results show that in desert ants active locomotion is essential for providing the ants’ odometer and hence its path integrator with the necessary information.  相似文献   

16.
A network model of optic flow processing, based on physiological and anatomical features of motion-processing neurons, is used to investigate the role of small-field motion detectors emulating T5 cells in producing optic flow selective properties in wide-field collator neurons. The imposition of different connectivities can mimic variations observed in comparative studies of lobula plate architecture across the Diptera. The results identify two features that are crucial for optic flow selectivity: the broadness of the spatial patterns of synaptic connections from motion detectors to collators, and the relative contributions of excitatory and inhibitory synaptic outputs. If these two aspects of the innervation matrix are balanced appropriately, the network's sensitivity to perturbations in physiological properties of the small-field motion detectors is dramatically reduced, suggesting that sensory systems can evolve robust mechanisms that do not rely upon precise control of network parameters. These results also suggest that alternative lobula plate architectures observed in insects are consistent in allowing optic flow selective properties in wide-field neurons. The implications for the evolution of optic flow selective neurons are discussed.  相似文献   

17.
We examine the structure of the visual motion projected on the retina during natural locomotion in real world environments. Bipedal gait generates a complex, rhythmic pattern of head translation and rotation in space, so without gaze stabilization mechanisms such as the vestibular-ocular-reflex (VOR) a walker’s visually specified heading would vary dramatically throughout the gait cycle. The act of fixation on stable points in the environment nulls image motion at the fovea, resulting in stable patterns of outflow on the retinae centered on the point of fixation. These outflowing patterns retain a higher order structure that is informative about the stabilized trajectory of the eye through space. We measure this structure by applying the curl and divergence operations on the retinal flow velocity vector fields and found features that may be valuable for the control of locomotion. In particular, the sign and magnitude of foveal curl in retinal flow specifies the body’s trajectory relative to the gaze point, while the point of maximum divergence in the retinal flow field specifies the walker’s instantaneous overground velocity/momentum vector in retinotopic coordinates. Assuming that walkers can determine the body position relative to gaze direction, these time-varying retinotopic cues for the body’s momentum could provide a visual control signal for locomotion over complex terrain. In contrast, the temporal variation of the eye-movement-free, head-centered flow fields is large enough to be problematic for use in steering towards a goal. Consideration of optic flow in the context of real-world locomotion therefore suggests a re-evaluation of the role of optic flow in the control of action during natural behavior.  相似文献   

18.
Dendritic integration is a fundamental element of neuronal information processing. So far, few studies have provided a detailed spatial picture of this process, describing the properties of local dendritic activity and its subcellular organization. Here, we used 2-photon calcium imaging in optic flow processing neurons of the fly Calliphora vicina to determine the preferred location and direction of local motion cues for small branchlets throughout the entire dendrite. We found a pronounced retinotopic mapping on both the subcellular and the cell population level. In addition, dendritic branchlets residing in different layers of the neuropil were tuned to distinct directions of motion. Summing the local receptive fields of all dendritic branchlets reproduced the characteristic properties of these neurons’ axonal output receptive fields. Our results corroborate the notion that the dendritic morphology of vertical system cells allows them to selectively collect local motion inputs with particular directional preferences from a spatially organized input repertoire, thus forming filters that match global patterns of optic flow. Furthermore, we suggest that the facet arrangement across the fly’s eye shapes the subcellular direction tuning to local motion stimuli. These data illustrate a highly structured circuit organization as an efficient way to hard-wire a complex sensory task.  相似文献   

19.
An important role of visual systems is to detect nearby predators, prey, and potential mates, which may be distinguished in part by their motion. When an animal is at rest, an object moving in any direction may easily be detected by motion-sensitive visual circuits. During locomotion, however, this strategy is compromised because the observer must detect a moving object within the pattern of optic flow created by its own motion through the stationary background. However, objects that move creating back-to-front (regressive) motion may be unambiguously distinguished from stationary objects because forward locomotion creates only front-to-back (progressive) optic flow. Thus, moving animals should exhibit an enhanced sensitivity to regressively moving objects. We explicitly tested this hypothesis by constructing a simple fly-sized robot that was programmed to interact with a real fly. Our measurements indicate that whereas walking female flies freeze in response to a regressively moving object, they ignore a progressively moving one. Regressive motion salience also explains observations of behaviors exhibited by pairs of walking flies. Because the assumptions underlying the regressive motion salience hypothesis are general, we suspect that the behavior we have observed in Drosophila may be widespread among eyed, motile organisms.  相似文献   

20.
The neural mechanisms for the perception of face and motion were studied using psychophysical threshold measurements, event-related potentials (ERPs), and functional magnetic resonance imaging (fMRI). A face-specific ERP component, N170, was recorded over the posterior temporal cortex. Removal of the high-spatial-frequency components of the face altered the perception of familiar faces significantly, and familiarity can facilitate the cortico-cortical processing of facial perceptions. Similarly, the high-spatial-frequency components of the face seemed to be crucial for the recognition of facial expressions. Aging and visuospatial impairments affected motion perception significantly. Two distinct components of motion ERPs, N170 and P200, were recorded over the parietal region. The former was related to horizontal motion perception while the latter reflected the perception of radial optic flow motion. The results of fMRI showed that horizontal movements of objects and radial optic flow motion were perceived differently in the V5/MT and superior parietal lobe. We conclude that an integrated approach can provide useful information on spatial and temporal processing of face and motion non-invasively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号