首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of molecular slippage of proton pumps, of proton leak and of coupling heterogeneity of mitochondrial population to the well-known non-linear interrelationship between resting state respiration and the protonmotive force is discussed in view of the following experimental findings. (1) After blocking mitochondrial respiration with cyanide, the rate of dissipation of the membrane potential is non-linearly dependent on the actual membrane potential, similarly to the resting state respiration in mitochondria titrated with small amounts of an inhibitor. In contrast, delta pH dissipates proportionally to its actual value. (2) The rate of electron flow from succinate to ferricyanide depends upon the protonmotive force, similarly to the flow from succinate to oxygen. This strongly suggests that the H+/e- stoichiometry in complexes III and IV of the respiratory chain is constant. (3) Mitochondria 'in situ', in permeabilized Ehrlich ascites cells, exhibit the same non-linear flux/force relationship as isolated mitochondria. These results strongly suggest that the non-ohmic characteristics of the inner mitochondrial membrane, with respect to protons driven by the membrane potential but not by the concentration gradient, is the main factor responsible for the nonlinear flux/force relationship in resting state mitochondria.  相似文献   

2.
We describe the existence of a potassium ion transport mechanism in the mitochondrial inner membrane of a lower eukaryotic organism, Acanthamoeba castellanii. We found that substances known to modulate potassium channel activity influenced the bioenergetics of A. castellanii mitochondria. In isolated mitochondria, the rate of resting respiration is increased by about 10% in response to potassium channel openers, i.e. diazoxide and BMS-191095, during succinate-, malate-, or NADH-sustained respiration. This effect is strictly dependent on the presence of potassium ions in an incubation medium and is reversed by glibenclamide (a potassium channel blocker). Diazoxide and BMS-191095 also caused a slight but statistically significant depolarization of mitochondrial membrane potential (measured with a TPP(+)-specific electrode), regardless of the respiratory substrate used. The resulting steady state value of membrane potential was restored after treatment with glibenclamide or 1 mM ATP. Additionally, the electrophysiological properties of potassium channels present in the A. castellanii inner mitochondrial membrane are described in the reconstituted system, using black lipid membranes. Conductance from 90 +/- 7 to 166 +/- 10 picosiemens, inhibition by 1 mM ATP/Mg(2+) or glibenclamide, and activation by diazoxide were observed. These results suggest that an ATP-sensitive potassium channel similar to that of mammalian mitochondria is present in A. castellanii mitochondria.  相似文献   

3.
The mitochondrial membrane potential in isolated hepatocytes was measured using the distribution of the lipophilic cation triphenylmethylphosphonium (TPMP+) with appropriate corrections for plasma membrane potential, cytoplasmic and mitochondrial binding of TPMP+, and other factors. The relationship between mitochondrial membrane potential and respiration rate in hepatocytes was examined as the respiratory chain was titrated with myxothiazol in the presence of oligomycin. This relationship was nonproportional and similar to results with isolated mitochondria respiring on succinate. This shows that there is an increased proton conductance of the mitochondrial inner membrane in situ at high values of membrane potential. From the respiration rate and mitochondrial membrane potential of hepatocytes in the absence of oligomycin, we estimate that the passive proton permeability of the mitochondrial inner membrane accounts for 20-40% of the basal respiration rate of hepatocytes. The relationship between log[TPMP+]tot/[TPMP+]e and respiration rate in thymocytes was also nonproportional suggesting that the phenomenon is not peculiar to hepatocytes. There is less mitochondrial proton leak in hepatocytes from hypothyroid rats. A large proportion of the difference in basal respiration rate between hepatocytes from normal and hypothyroid rats can be accounted for by differences in the proton permeability characteristics of the mitochondrial inner membrane.  相似文献   

4.
Ehrlich ascites tumour cells were treated with digitonin so that they became permeable for low-molecular-weight compounds but, at certain concentrations of digitonin, retained most of their cytoplasmic proteins. Respiration of mitochondria with exogenous substrates and their membrane potential could thus be measured in situ by means of oxygen electrode and tetraphenylphosphonium-sensitive electrode, respectively. The results were compared with data from similar measurements on mitochondria isolated from such digitonin-permeabilized cells. Isolated mitochondria and mitochondria in situ oxidized succinate at similar rates and developed membrane potential of comparable magnitude. Both preparations also exhibited an identical nonlinear relationship between resting state respiration (titrated with a respiratory inhibitor) and the membrane potential. In the cells permeabilized with low concentrations of digitonin (i.e., retaining most of cytoplasmic proteins) and suspended in medium containing NaCl and other major anions and cations at concentrations close to those in mammalian plasma, anaerobiosis did not produce a decrease in the mitochondrial membrane potential, which was collapsed only after a subsequent addition of oligomycin. In this medium, glucose had little effect on either respiration or the membrane potential.  相似文献   

5.
Peroxynitrite and Brain Mitochondria: Evidence for Increased Proton Leak   总被引:5,自引:0,他引:5  
Abstract: Peroxynitrite has been reported to inhibit irreversibly mitochondrial respiration. Here we show that three sequential additions of 200 µ M peroxynitrite (initial concentration) to rat brain mitochondria (0.2 mg of protein/ml) significantly stimulated state 4 respiration and that further additions progressively inhibited it. No stimulation of state 3 respiration or of the maximal enzymatic activities of the respiratory chain complexes was observed on identical peroxynitrite exposure. State 4 respiration is a consequence of the proton permeability of the mitochondrial inner membrane, and we demonstrate that the peroxynitrite-induced stimulation of state 4 respiration is accompanied by a decreased mitochondrial membrane potential, suggesting an increase in this proton leak. Cyclosporin A did not affect the stimulation, suggesting no involvement of the mitochondrial permeability transition pore. The stimulation was prevented by the lipid-soluble vitamin E analogue Trolox, suggesting the involvement of lipid peroxidation, a proposed mechanism of peroxynitrite cytotoxicity. Lipid peroxidation has previously been reported to increase membrane bilayer proton permeability. The high polyunsaturate content of brain mitochondrial phospholipids may predispose them to peroxidation, and thus a peroxynitrite-induced, lipid peroxidation-mediated increase in proton leak may apply particularly to brain mitochondria and to certain neurodegenerative disorders thought to proceed via mechanisms of mitochondrial oxidative damage.  相似文献   

6.
We have determined the relationship between rate of respiration and protonmotive force in oligomycin-inhibited liver mitochondria isolated from euthyroid, hypothyroid and hyperthyroid rats. Respiration rate was titrated with the respiratory-chain inhibitor malonate. At any given respiration rate mitochondria isolated from hypothyroid rats had a protonmotive force greater than mitochondria isolated from euthyroid controls, and mitochondria isolated from hyperthyroid rats had a protonmotive force less than mitochondria isolated from euthyroid controls. In the absence of malonate mitochondrial respiration rate increased in the order hypothyroid less than euthyroid less than hyperthyroid, while protonmotive force increased in the order hyperthyroid less than euthyroid less than hypothyroid. These findings are consistent with a thyroid-hormone-induced increase in the proton conductance of the inner mitochondrial membrane or a decrease in the H+/O ratio of the respiratory chain at any given protonmotive force. Thus the altered proton conductance or H+/O ratio of mitochondria isolated from rats of different thyroid hormone status controls the respiration rate required to balance the backflow of protons across the inner mitochondrial membrane. We discuss the possible relevance of these findings to the control of state 3 and state 4 respiration by thyroid hormone.  相似文献   

7.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

8.
Transport of glutathione across the mitochondrial membranes   总被引:4,自引:0,他引:4  
Transport of glutathione (GSH) into mitochondria was observed when mitochondria in state 4 respiration were incubated with high concentrations of GSH. This transport was suppressed by antimycin A or dicyclohexyl-carbodiimide, or in state 3 respiration. Upon dissipation of the proton gradient by a proton ionophore, mitochondrial GSH was released into the medium. GSH moved freely across the proton-permeated mitochondrial membrane, its movement depending only on the GSH gradient across the inner membrane. These results indicate that there is a transport system for GSH in the mitochondrial membrane, and that a proton gradient is necessary to maintain GSH in the matrix, and to transport GSH into mitochondria.  相似文献   

9.
Effects of N-acylethanolamines (NAEs): N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine and N-palmitoylethanolamine, on energy coupling and permeability of rat heart mitochondria were investigated. In nominally Ca2+-free media, these compounds exerted a weak protonophoric effect manifested by dissipation of the transmembrane potential and stimulation of resting state respiration. The strongest action was exhibited by N-arachidonoylethanolamine, followed by N-oleoylethanolamine, whereas N-palmitoylethanolamine was almost inactive. These protonophoric effects were resistant to cyclosporin A (CsA) and were much weaker than those of corresponding nonesterified fatty acids. In uncoupled mitochondria N-arachidonoylethanolamine and N-oleoylethanolamine partly inhibited mitochondrial respiration with glutamate and succinate but not with tetramethyl-p-phenylenediamine (TMPD) plus ascorbate as respiratory substrates. In mitochondria preloaded with small amounts of Ca2+, NAEs produced a much stronger dissipation of the membrane potential and a release of accumulated calcium, both effects being inhibited by CsA, indicative for opening of the mitochondrial permeability transition pore (PTP). Again, the potency of this action was N-arachidonoylethanolamine>N-oleoylethanolamine>N-palmitoylethanolamine. However, in spite of making the matrix space accessible to external [14C]sucrose, N-arachidonoylethanolamine and N-oleoylethanolamine resulted in only a limited swelling of mitochondria and diminished the rate of swelling produced by high Ca2+ load.  相似文献   

10.
The effects of the glycoside antibiotic sporaviridins (SVDs) on oxidative phosphorylation of rat-liver mitochondria were examined. SVDs released state 4 respiration, dissipated transmembrane electrical potential, and accelerated ATPase activity. These facts demonstrated that SVDs are potent uncouplers of oxidative phosphorylation. During the uncoupling caused by SVDs, large amplitude swelling and oxidation of intramitochondrial NAD(P)H occurred, suggesting that SVDs greatly enhanced nonspecific permeability of the inner mitochondrial membrane. It is suggested that the uncoupling action of SVDs might be caused by dissipation of proton electrochemical potential due to an increase in the permeability of inner mitochondrial membrane.  相似文献   

11.
The effects of the glycoside antibiotic sporaviridins (SVDs) on oxidative phosphorylation of rat-liver mitochondria were examined. SVDs released state 4 respiration, dissipated transmembrane electrical potential, and accelerated ATPase activity. These facts demonstrated that SVDs are potent uncouplers of oxidative phosphorylation. During the uncoupling caused by SVDs, large amplitude swelling and oxidation of intramitochondrial NAD(P)H occurred, suggesting that SVDs greatly enhanced nonspecific permeability of the inner mitochondrial membrane. It is suggested that the uncoupling action of SVDs might be caused by dissipation of proton electrochemical potential due to an increase in the permeability of inner mitochondrial membrane.  相似文献   

12.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

13.
The contribution of different steps to the control of oxidative phosphorylation in isolated rat liver mitochondria was investigated by a combination of experiments and computer simulations. The parameters of the mathematical model of phosphorylating mitochondria were derived from experimental data. The model correctly describes the competition between ATP utilization inside and outside mitochondria for the ATP generated in mitochondria. On the basis of the good agreement between experiments and simulations, the contribution of different steps to the control of respiration was estimated by computing their control strengths, i.e., the influence of their activities on the rate of respiration. The rate-controlling influences vary depending on the load of oxidative phosphorylation. The predominant steps are: in the fully active state (State 3) — the hydrogen supply to the respiratory chain; in the resting state (State 4) — the proton leak of the mitochondrial inner membrane; in states of non-maximum ATP export — the adenine nucleotide translocator. Titrations of respiration with phenylsuccinate, antimycin, oligomycin and carboxyatractyloside completely support these conclusions.  相似文献   

14.
The proton leak across the mitochondrial inner membrane   总被引:10,自引:0,他引:10  
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo.  相似文献   

15.
It was earlier shown that the calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 resulted in the Tl+-induced mitochondrial permeability transition pore (MPTP) opening in the inner membrane. This opening was accompanied by an increase in swelling and membrane potential dissipation and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration. This respiratory decrease was markedly leveled by mersalyl (MSL), the phosphate symporter (PiC) inhibitor which poorly stimulated the calcium-induced swelling, but further increased the potential dissipation. All of these effects of Ca2+ and MSL were visibly reduced in the presence of the MPTP inhibitors (ADP, N-ethylmaleimide, and cyclosporine A). High MSL concentrations attenuated the ability of ADP to inhibit the MPTP. Our data suggest that the PiC can participate in the Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria.  相似文献   

16.
The effects of Bax (full-length, FL, and C-terminal truncated, DeltaC) on respiration rate, membrane potential, MgATPase activity and kinetics of regulation of respiration were studied in isolated rat heart mitochondria and permeabilized cardiomyocytes. The results showed that while both Bax-FL and Bax-DeltaC permeabilized the outer mitochondrial membrane, released cytochrome c and reduced the respiration rate, the latter could be fully restored by exogenous cytochrome c only in the case of Bax-DeltaC, but not in presence of Bax-FL. In addition, Bax-FL but not Bax-DeltaC increased the MgATPase activity, and their effects on the mitochondrial membrane potential were quantitatively different. None of these effects was sensitive to cyclosporin A (CsA).It is concluded that Bax-FL affects both the outer and the inner mitochondrial membranes by: (1) opening large pores in the outer membrane; (2) inhibiting some segments of the respiratory chain in the inner membrane; and (3) uncoupling the inner mitochondrial membrane by increasing proton leak without opening the permeability transition pore (PTP).  相似文献   

17.
This study involves the effect of aluminium phosphide exposure on the kinetic characteristics of cytochrome oxidase and the mitochondrial respiratory chain function in rat brain. Mitochondrial preparations from both control and aluminium phosphide-treated rats demonstrated significant decrease in the maximal activity of cytochrome oxidase (approximately 50%) when expressed per unit membrane protein and on a turnover number basis (nmol/min/nmol haem a). The results indicated that there was a decrease in the catalytic efficiency of the active oxidase molecules on aluminium phosphide treatment. Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria isolated from treated and control rats, in the break point of the biphasic plot which was shifted to a higher temperature. The decreased activity of cytochrome oxidase along with altered NADH and succinic dehydrogenase activities might have contributed towards a significant decline in state 3 and state 4 respiration. These alterations in the electron transport chain complexes in turn affected the ATP synthesis rate adversely in the mitochondria, isolated from treated rats. The data reflect the interaction of aluminium phosphide with redox chain components leading to the impairment of the electron transfer along the respiratory chain.  相似文献   

18.
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.  相似文献   

19.
Many of the data concerning the action of glucagon upon liver mitochondria are assimilated in this communication. This leads to the novel proposal that glucagon acts to inhibit the conductance of the mitochondrial inner membrane. When the isolated mitochondria are incubated in the absence of ADP, this proposed action of glucagon provides an explanation for the increase in the aerobic protonic electrochemical potential difference across the inner membrane, without effect upon respiratory rate. However, when the organelles are incubated in the presence of ADP, a different action of glucagon is suggested to increase the rate of respiration. These proposals are compared with those recently put forward to explain the action of thyroid hormones upon mitochrondria. An analysis is also made of the likely respiratory state of mitochondria in vivo, and the possible physiological significance of the new proposals is discussed in this context.  相似文献   

20.
Regulation of mitochondrial protein synthesis by thyroid hormone has been studied in isolated rat hepatocytes and liver mitochondria. Small doses (5 micrograms/100 g body wt) of triiodothyronine (T3) injected into hypothyroid rats increased both state 3 and 4 respiration by approximately 100%, while the ADP:O ratio remained constant. This suggests that T3 increases the numbers of functional respiratory chain units. T3 also induces mitochondrial protein synthesis by 50-100%. Analysis of the mitochondrial translation products show that all of the products were induced. No differential translation of the peptides involved in the respiratory chain was found. Regulation of the cytoplasmically made inner membrane peptides was also investigated in isolated hepatocytes. The majority of these peptides were not influenced by T3, in contrast to the finding with mitochondrial translation products. Those found to be regulated by T3 belong to two subsets, which were either induced or repressed by hormone. Thus, T3 stimulated a general increase in the synthesis of mitochondrially translated inner membrane peptides, but regulates selectively those inner membrane peptides translated on cytoplasmic ribosomes. The findings suggest that hormone regulation of the respiratory chain is exerted through a few selective proteins, perhaps those which require subunits made from both nuclear and mitochondrial genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号