首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

2.
Hansenula polymorpha Deltapex14 cells are affected in peroxisomal matrix protein import and lack normal peroxisomes. Instead, they contain peroxisomal membrane remnants, which harbor a very small amount of the major peroxisomal matrix enzymes alcohol oxidase (AO) and dihydroxyacetone synthase (DHAS). The bulk of these proteins is, however, mislocated in the cytosol. Here, we show that in Deltapex14 cells overproduction of the PTS1 receptor, Pex5p, leads to enhanced import of the PTS1 proteins AO and DHAS but not of the PTS2 protein amine oxidase. The import of the PTS1 protein catalase (CAT) was not stimulated by Pex5p overproduction. The difference in import behavior of AO and CAT was not related to their PTS1, since green fluorescent protein fused to the PTS1 of either AO or CAT were both not imported in Deltapex14 cells overproducing Pex5p. When produced in a wild type control strain, both proteins were normally imported into peroxisomes. In Deltapex14 cells overproducing Pex5p, Pex5p had a dual location and was localized in the cytosol and bound to the outer surface of the peroxisomal membrane. Our results indicate that binding of Pex5p to the peroxisomal membrane and import of certain PTS1 proteins can proceed in the absence of Pex14p.  相似文献   

3.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

4.
Peroxisomal biogenesis is a complex process requiring the action of numerous peroxins. One central component of this machinery is Pex14p, an intrinsic peroxisomal membrane protein probably involved in the docking of Pex5p, the receptor for PTS1-containing proteins (peroxisomal targeting signal 1-containing proteins). In this work the membrane topology of mammalian Pex14p was studied. Using a combination of protease protection assays and CNBr cleavage, we show that the first 130 amino acid residues of Pex14p are highly protected from exogenously added proteases by the peroxisomal membrane itself. Data indicating that this domain is responsible for the strong interaction of Pex14p with the organelle membrane are presented. All the other Pex14p amino acid residues are exposed to the cytosol. The properties of recombinant human Pex14p were also characterised. Heterologous expressed Pex14p was found to be a homopolymer of variable stoichiometry. Finally, in vitro binding assays indicate that homopolymerisation of Pex14p involves a domain comprising amino acid residues 147-278 of this peroxin.  相似文献   

5.
We have isolated the Saccharomyces cerevisiae pex12-1 mutant from a screen to identify mutants defective in peroxisome biogenesis. The pex12delta deletion strain fails to import peroxisomal matrix proteins through both the PTS1 and PTS2 pathway. The PEX12 gene was cloned by functional complementation of the pex12-1 mutant strain and encodes a polypeptide of 399 amino acids. ScPex12p is orthologous to Pex12 proteins from other species and like its orthologues, S. cerevisiae Pex12p contains a degenerate RING finger domain of the C3HC4 type in its essential carboxy-terminus. Localization studies demonstrate that Pex12p is an integral peroxisomal membrane protein, with its NH2-terminus facing the peroxisomal lumen and with its COOH-terminus facing the cytosol. Pex12p-deficient cells retain particular structures that contain peroxisomal membrane proteins consistent with the existence of peroxisomal membrane remnants ("ghosts") in pex12A null mutant cells. This finding indicates that pex12delta cells are not impaired in peroxisomal membrane biogenesis. In immunoisolation experiments Pex12p was co-purified with the RING finger protein Pex10p, the PTS1 receptor Pex5p and the docking proteins for the PTS1 and the PTS2 receptor at the peroxisomal membrane, Pex13p and Pex14p. Furthermore, two-hybrid experiments suggest that the two RING finger domains are sufficient for the Pex10p-Pex12p interaction. Our results suggest that Pex12p is a component of the peroxisomal translocation machinery for matrix proteins.  相似文献   

6.
We have identified an S. cerevisiae integral peroxisomal membrane protein of M of 42,705 (Pex13p) that is a component of the peroxisomal protein import apparatus. Pex13p's most striking feature is an src homology 3 (SH3) domain that interacts directly with yeast Pex5p (former Pas10p), the recognition factor for the COOH-terminal tripeptide signal sequence (PTS1), but not with Pex7p (former Pas7p), the recognition factor for the NH2-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins. Hence, Pex13p serves as peroxisomal membrane receptor for at least one of the two peroxisomal signal recognition factors. Cells deficient in Pex13p are unable to import peroxisomal matrix proteins containing PTS1 and, surprisingly, also those containing PTS2. Pex13p deficient cells retain membranes containing the peroxisomal membrane protein Pex11p (former Pmp27p), consistent with the existence of independent pathways for the integration of peroxisomal membrane proteins and for the translocation of peroxisomal matrix proteins.  相似文献   

7.
We identified a Saccharomyces cerevisiae peroxisomal membrane protein, Pex13p, that is essential for protein import. A point mutation in the COOH-terminal Src homology 3 (SH3) domain of Pex13p inactivated the protein but did not affect its membrane targeting. A two-hybrid screen with the SH3 domain of Pex13p identified Pex5p, a receptor for proteins with a type I peroxisomal targeting signal (PTS1), as its ligand. Pex13p SH3 interacted specifically with Pex5p in vitro. We determined, furthermore, that Pex5p was mainly present in the cytosol and only a small fraction was associated with peroxisomes. We therefore propose that Pex13p is a component of the peroxisomal protein import machinery onto which the mobile Pex5p receptor docks for the delivery of the selected PTS1 protein.  相似文献   

8.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

9.
Pex14p is a central component of the peroxisomal protein import machinery, which has been suggested to provide the point of convergence for PTS1- and PTS2-dependent protein import in yeast cells. Here we describe the identification of a human peroxisome-associated protein (HsPex14p) which shows significant similarity to the yeast Pex14p. HsPex14p is a carbonate-resistant peroxisomal membrane protein with its C terminus exposed to the cytosol. The N terminus of the protein is not accessible to exogenously added antibodies or protease and thus might protrude into the peroxisomal lumen. HsPex14p overexpression leads to the decoration of tubular structures and mislocalization of peroxisomal catalase to the cytosol. HsPex14p binds the cytosolic receptor for the peroxisomal targeting signal 1 (PTS1), a result consistent with a function as a membrane receptor in peroxisomal protein import. Homo-oligomerization of HsPex14p or interaction of the protein with the PTS2-receptor or HsPex13p was not observed. This distinguishes the human Pex14p from its counterpart in yeast cells and thus supports recent data suggesting that not all aspects of peroxisomal protein import are conserved between yeasts and humans. The role of HsPex14p in mammalian peroxisome biogenesis makes HsPEX14 a candidate PBD gene for being responsible for an unrecognized complementation group of human peroxisome biogenesis disorders.  相似文献   

10.
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling   总被引:1,自引:0,他引:1  
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.  相似文献   

11.
We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  相似文献   

12.
The Saccharomyces cerevisiae pex17-1 mutant was isolated from a screen to identify mutants defective in peroxisome biogenesis. pex17-1 and pex17 null mutants fail to import matrix proteins into peroxisomes via both PTS1- and PTS2-dependent pathways. The PEX17 gene (formerly PAS9; Albertini, M., P. Rehling, R. Erdmann, W. Girzalsky, J.A.K.W. Kiel, M. Veenhuis, and W.-H Kunau. 1997. Cell. 89:83–92) encodes a polypeptide of 199 amino acids with one predicted membrane spanning region and two putative coiled-coil structures. However, localization studies demonstrate that Pex17p is a peripheral membrane protein located at the surface of peroxisomes. Particulate structures containing the peroxisomal integral membrane proteins Pex3p and Pex11p are evident in pex17 mutant cells, indicating the existence of peroxisomal remnants (“ghosts”). This finding suggests that pex17 null mutant cells are not impaired in peroxisomal membrane biogenesis. Two-hybrid studies showed that Pex17p directly binds to Pex14p, the recently proposed point of convergence for the two peroxisomal targeting signal (PTS)-dependent import pathways, and indirectly to Pex5p, the PTS1 receptor. The latter interaction requires Pex14p, indicating the potential of these three peroxins to form a trimeric complex. This conclusion is supported by immunoprecipitation experiments showing that Pex14p and Pex17p coprecipitate with both PTS receptors in the absence of Pex13p. From these and other studies we conclude that Pex17p, in addition to Pex13p and Pex14p, is the third identified component of the peroxisomal translocation machinery.  相似文献   

13.
We isolated peroxisome biogenesis-defective Chinese hamster ovary cell mutants from TKaG2 cells, wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal (PTS) type 2-tagged green fluorescent protein, by the 9-(1'-pyrene)nonanol/UV selection method. Ten mutant clones showed cytosolic PTS2-green fluorescent protein, indicative of a defect in PTS2 import, and were classified in five complementation groups, i.e. pex1, pex2, pex5, pex14, and group A. One PEX5-deficient mutant, ZPG231, showed a novel phenotype: PTS2 proteins in the cytosol, but PTS1 proteins and catalase in peroxisomes. In ZPG231, two isoforms of the PTS1 receptor Pex5p, a shorter Pex5pS and a longer Pex5pL, were expressed as in wild-type cells, but possessed the missense point mutation S214F in both Pex5p isoforms, termed Pex5pS-S214F and Pex5pL-S214F, respectively. The S214F mutation was located only one amino acid upstream of the Pex5pL-specific 37-amino acid insertion site. Pex5pS-S214F and Pex5pL-S214F interacted with peroxisomal proteins, including PTS1 protein, catalase, and Pex14p, as efficiently as normal Pex5p. In contrast, the S214F mutation severely affected the binding of Pex5pL to the PTS2 receptor Pex7p. Expression of Pex5pL-S214F in pex5 cell mutants defective in PTS1 and PTS2 transport restored peroxisomal import of PTS1, but not PTS2. Together, the results indicate that ZPG231 is the first cell mutant providing evidence that disruption of the Pex5pL-Pex7p interaction completely abolishes PTS2 import in mammals.  相似文献   

14.
Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome- associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.  相似文献   

15.
Pex5p is the receptor for the vast majority of peroxisomal matrix proteins. Here, we show that about 15% of rat liver Pex5p is found in the peroxisomal fraction representing 0.06% of total peroxisomal protein. This population of Pex5p displays all the characteristics of an intrinsic membrane protein. Protease protection assays indicate that this pool of Pex5p has domains exposed on both sides of the peroxisomal membrane. The strong interaction of Pex5p with the membrane of the organelle is not affected by mild protease treatment of intact organelles, conditions that result in the partial degradation of Pex13p. Cytosolic Pex5p is a monomeric protein. In contrast, virtually all peroxisomal Pex5p was found to be part of a stable 250-kDa protein assembly. This complex was isolated and shown to comprise just two subunits, Pex5p and Pex14p.  相似文献   

16.
Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import.  相似文献   

17.
According to current models of peroxisomal biogenesis, Pex5p cycles between the cytosol and the peroxisome transporting newly synthesized proteins to the organelle matrix. However, little is known regarding the mechanism of this pathway. Here, we show that Pex5p enters and exits the peroxisomal compartment in a process that requires ATP. Insertion of Pex5p into the peroxisomal membrane is blocked by anti-Pex14p IgGs. At the peroxisomal level, two Pex14p-associated populations of Pex5p could be resolved, stage 2 and stage 3 Pex5p, both exposing the majority of their masses into the organelle lumen. Stage 3 Pex5p can be easily detected only under ATP-limiting conditions; in the presence of ATP it leaves the peroxisomal compartment rapidly. Our data suggest that translocation of PTS1-containing proteins across the peroxisomal membrane occurs concomitantly with formation of the Pex5p-Pex14p membrane complex and that this is probably the site from which Pex5p leaves the peroxisomal compartment.  相似文献   

18.
In mammals, two isoforms of the peroxisome targeting signal (PTS) type 1 receptor Pex5p, i.e. Pex5pS and Pex5pL with an internal 37-amino acid insertion, have previously been identified. Expression of either type of Pex5p complements the impaired PTS1 import in Chinese hamster ovary pex5 mutants, but only Pex5pL can rescue the PTS2 import defect noted in a subgroup of pex5 mutants such as ZP105. In this work, we found that Pex5pL directly interacts with the PTS2 receptor Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5pL, but not Pex5pS, mediated the binding of PTS2 protein to Pex14p by translocating Pex7p, demonstrating that Pex5pL plays a pivotal role in peroxisomal PTS2 import. Pex5p was localized mostly in the cytosol in wild-type CHO-K1 and Pex14p-deficient mutant cells, whereas it accumulated in the peroxisomal remnants in cell mutants defective in Pex13p or the RING family peroxins such as Pex2p and Pex12p. Furthermore, overexpression of Pex14p, but not Pex10p, Pex12p, or Pex13p, caused accumulation of Pex5p in peroxisomal membranes, with concomitant interference with PTS1 and PTS2 import. Therefore, Pex5p carrying the cargoes most likely docks with the initial site (Pex14p) in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p, and Pex12p.  相似文献   

19.
Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed.In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.  相似文献   

20.
Two isoforms of the peroxisomal targeting signal type 1 (PTS1) receptor, termed Pex5pS and (37-amino-acid-longer) Pex5pL, are expressed in mammals. Pex5pL transports PTS1 proteins and Pex7p-PTS2 cargo complexes to the initial Pex5p-docking site, Pex14p, on peroxisome membranes, while Pex5pS translocates only PTS1 cargoes. Here we report functional Pex5p domains responsible for interaction with peroxins Pex7p, Pex13p, and Pex14p. An N-terminal half, such as Pex5pL(1-243), comprising amino acid residues 1 to 243, bound to Pex7p, Pex13p, and Pex14p and was sufficient for restoring the impaired PTS2 import of pex5 cell mutants, while the C-terminal tetratricopeptide repeat motifs were required for PTS1 binding. N-terminal Pex5p possessed multiple Pex14p-binding sites. Alanine-scanning analysis of the highly conserved seven (six in Pex5pS) pentapeptide WXXXF/Y motifs residing at the N-terminal region indicated that these motifs were essential for the interaction of Pex5p with Pex14p and Pex13p. Moreover, mutation of several WXXXF/Y motifs did not affect the PTS import-restoring activity of Pex5p, implying that the binding of Pex14p to all of the WXXXF/Y sites was not a prerequisite for the translocation of Pex5p-cargo complexes. Pex5p bound to Pex13p at the N-terminal part, not to the C-terminal SH3 region, via WXXXF/Y motifs 2 to 4. PTS1 and PTS2 import required the interaction of Pex5p with Pex14p but not with Pex13p, while Pex5p binding to Pex13p was essential for import of catalase with PTS1-like signal KANL. Pex5p recruited PTS1 proteins to Pex14p but not to Pex13p. Pex14p and Pex13p formed a complex with PTS1-loaded Pex5p but dissociated in the presence of cargo-unloaded Pex5p, implying that PTS cargoes are released from Pex5p at a step downstream of Pex14p and upstream of Pex13p. Thus, Pex14p and Pex13p very likely form mutually and temporally distinct subcomplexes involved in peroxisomal matrix protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号