首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspects of the biology of Gliocladium virens and parasitism of sclerotia of Sclerotinia sclerotiorum in soil were studied. G. virens parasitized and decayed sclerotia of S. sclerotiorum, S. minor, Botrytis cinerea, Sclerotium, rolfsii and Macrophomina phaseolina on laboratory media and caused a reduction in survival of sclerotia of S. sclerotiorum in soil. It was active over a broad range of soil moisture levels and over the entire agricultural soil pH range. The main factor limiting its use as a biological control agent was its temperature requirements.  相似文献   

2.
Three isolates of Gliocladium virens (G1, G2 and G3) and two of Trichoderma longibrachiatum (T1 and T2) were screened against isolates of three soilborne plant pathogens namely Rhizoctonia solani, Sclerotium rolfsii and Pythium aphanidermatum. G. virens exhibited stronger hyperparasitism and wider biological spectrum than T. longibrachiatum. Further, similarities as well as variation was observed in the ability of the various isolates to invade the test pathogens in dual culture. For the hyperparasites, acidic pH range (5.0 to 5.5) favoured both growth and spore germination. The hyperparasites made direct contact with the pathogens followed by varied modes of attack invariably leading to cell disruption. Antagonists, G1 and G3 revealed strong antibiosis while T2 showed moderate effect. All the isolates produced enhanced levels of lytic enzymes adaptively and there were marked differences among them. However, no correlation was observed between these attributes and the hyperparasitic potential of the various isolates in dual culture. The relevance and the role of enzymes and toxic metabolite(s) in the antagonism of G. virens and T. longibrachiatum to these pathogens are discussed.  相似文献   

3.
The gfp gene from the jellyfish Aequorea victoria, coding for the Green Fluorescent Protein (GFP), was used as a reporter gene to transform a Trichoderma virens strain I10, characterized as having a promising biocontrol activity against a large number of phytopathogenic fungi. On the basis of molecular and biological results, a stable GFP transformant was selected for further experiments. In order to evaluate the effects of GFP transformation on mycoparasitic ability of T. virens I10, sclerotia of Sclerotium rolfsii, Sclerotinia sclerotiorum and S. minor were inoculated with the T. virens strain I10 GFP transformant or the wild type strain. Statistical analysis of percentages of decayed sclerotia showed that the transformation of the antagonistic isolate with the GFP reporter gene did not modify mycoparasitic activity against sclerotia. Sclerotium colonization was followed by fluorescent microscopy revealing intracellular growth of the antagonist in the cortex (S. rolfsii) and inter-cellular growth in the medulla (S. rolfsii, and S. sclerotiorum). The uniformly distributed mycelium of T. virens just beneath the rind of sclerotia of both S. rolfsii and S. sclerotiorum suggests that the sclerotia became infected at numerous randomly distributed locations without any preferential point of entry.  相似文献   

4.
Scanning electron microscopy showed that hyphae of Coniothyrium minitans produced appressorium-like swellings when they came in contact with Sclerotinia sclerotiorum in dual culture on PDA. The parasitized hyphae gradually skrank and collapsed, and hyphae of the mycoparasite were found inside the host hyphae. The mycoparasite hyphae grew inter- and intracellularly within the sclerotia of S. sclerotiorum. In the later stages of parasitism, hyphae of the mycoparasite proliferated extensively within the sclerotia and formed pycnidia near the sclerotial surface. At this stage, the sclerotia became flattened, soft and disintegrated. Sclerotia parasitized by C. minitans failed to germinate either myceliogenically or carpogenically.  相似文献   

5.
Y. Elad    Rina  Barak  I. Chet  Y. Henis 《Journal of Phytopathology》1983,107(2):168-175
The uhrastructural changes during parasitism of the biocontrol agents Trichoderma harzianum and T. hamatum, were observed under a transmission electron microscope. Electron micrographs show that during the interaction of Trichoderma spp. with either Sclerotium rolfsii or Rhizoctonia solani the hyphae of the parasites contact their host, and then enzymatically digest their cell walls. Extracellular fibrillar material is deposited between the interacting cells. Parasite organelles, e.g. mitochondria, vesicles and dark osmiophilic inclusions, accumulate in the parasitizing cells. In response to the invasion, the host produces a sheath matrix which encapasulates the penetrating hypha and the host cells become empty of cytoplasm.  相似文献   

6.
The sugarbeet cultivar Kaumera was found to be highly susceptible to infection by the root-rot pathogens Rhizoctonia solani and Sclerotium rolfsii in the absence of salinity stress. Under this environmental condition, R. solani was more efficient than S. rolfsii in producing cell wall-degrading enzymes in infected hypocotyls. Xylanase and galactanase were most effective. The rate of cell wall degradation by R. solani was nearly 2.5 times that of S. rolfsii when cells walls of healthy hypocotyls were used as sole carbon substrate for the in vitro produced crude enzymes.Under salinity stress the pathogenicity and the performance of cell wall-degrading enzymes of R. solani and S. rolfsii varied profoundly. Pathogenicity studies showed that R. solani appeared to be more tolerant than S. rolfsii of the salinity stresses applied, and relatively more virulent to cv Kaumera. The activities of cell wall enzymes of R. solani decreased and those of S. rolfsii increased with increased salt concentration when cell wall material was used as a sole carbon source. The metabolic products produced under salinity stress by R. solani and R. solani in the cell wall amended culture media shifted the initial pH towards neutrality or slight alkalinity for R. solani and to high acidity for S. rolfsii.When model substrates were used, xyland and galactan were the most responsive substrates for degradation by the cell wall enzymes of the two fungi studied. The rate of degradation was higher for S. rolfsii than for R. solani. The excessive acidity in salt stressed S. rolfsii culture media suggested reduced activities of the enzymes involved in cell wall degradation in vivo. This may explain the decreased virulence potentialities.  相似文献   

7.
Summary The surfaces of sclerotia of Rhizoctonia solani, Botrytis cinerea and Sclerotinia rolfsii were examined with the Stereoscan electron microscope.The periphery of the sclerotium of R. solani consists of a loose net-work of hyphae which are not sufficiently thickened to withstand the extreme desiccation that takes place when the material is coated with gold-palladium alloy.The surface of the sclerotium of B. cinerea has many closely packed hyphal tips which project outwards from the centre of the structure. The thickening of the walls of the hyphae enable them to retain their shapes. A film was observed on the most exposed areas and this may have been dried-up melanin pigment.The outer skin of the sclerotium of S. rolfsii is an almost continuous layer which is thrown into ridges and troughs to give a wavy appearance.  相似文献   

8.
Nineteen Trichoderma isolates, collected from different locations in Bangladesh, were characterised through phenotypic, biochemical and molecular means. Besides, they were assessed for their antifungal action in vitro. The isolates were divided into three groups: T. asperellum, T. virens and T. harzianum. A dual culture assay and a culture filtrate assay against 6 phytopathogens revealed that 9 of the 19 isolates showed significant antifungal activities. The isolate T. harzianum TR05 showed the highest inhibition against Fusarium oxysporum, Rhizoctonia solani, Fusarium circinatum and Phomopsis vexans, followed by T. asperellum TR08 and T. virens TR06. TR08 had the highest inhibition against Sclerotium rolfsii and Pythium aphanidermatum, followed by TR05 and TR06. These findings were in agreement with their activities of extracellular hydrolytic enzymes, including chitinase, β-1,3-glucanase, and proteinase. Our results suggest that isolates TR05, TR06 and TR08 have the potential to be effective biocontrol agents against the phytopathogenic fungi.  相似文献   

9.
Thirty-five strains ofTrichoderma viride andT. harzianum were screened for their antagonistic ability against the rice sheath blight pathogen,Rhizoctonia solani. The strains that inhibited/overgrew the phytopathogenic fungus were considered effective. Light microscopic studies showed the antagonism of the hyphae of effectiveTrichoderma strains towards their host hyphae. Chitinase activity ofTrichoderma culture filtrates was enhanced, when colloidal chitin was used as the sole carbon source, instead of glucose. Chitinase pattern differed among the four select strains. The chitinase isoforms are induced differentially by carbon sources. The chitin affinity column fraction ofTrichoderma culture filtrate inhibited,in vitro, the growth ofR. solani.  相似文献   

10.
The specific activities of enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX) and glutathione reductase (GR), which are involved in protection against toxic species of oxygen, were determined in mycelia extracts of pentachloronitrobenzene (PCNB)-tolerant and susceptible soil fungi. The organisms assayed were the highly PCNB-sensitive Rhizoctonia solani and Rhizopus arrhizus; Sclerotium rolfsii and Trichoderma harzianum, which are moderately susceptible to PCNB, and the fungicide-tolerant Fusarium oxysporum f. sp. melonis and Pythium aphanidermatum. No GPOX activity was detected in the six examined fungi. Significant differences in the specific activities of the other enzyme systems among the fungi were evident. Remarkably low levels of CAT activities were measured in R. solani. Except for T. harzianum, no meaningful differences regarding SOD, CAT and GR activities with age of the fungi cultures were observed. The electrophoretic patterns of SOD and CAT displayed dissimilarities among the fungi under study. P. aphanidermatum is more polymorphic with respect to both SOD and CAT enzyme systems as compared to the other fungi. The SOD of F. oxysporum f. sp. melonis, R. arrhizus and T. harzianum is a cuprozinc enzyme, while the mangano-SOD species was detected in S. rolfsii, R. solani and T. harzianum.  相似文献   

11.
Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria   总被引:3,自引:0,他引:3  
Bacterial antagonism, responsible for biological control, may operate by antiobiosis, competition or parasitism. Parasitism relies on lytic enzymes for the degradation of cell walls of pathogenic fungi. Serratia marcescens was found to be an efficient biocontrol agent of Sclerotium rolfsii and Rhizoctonia solani under greenhouse conditions. Populations of 105 or 106 colony forming units g-1 soil were the most effective. Drench and drip application of S. marcescens suspension were more effective in controlling S. rolfsii than spraying, mixing in soil or seed coating. The highest population density of the bacteria in the rhizosphere was found on the proximal portion of the root, decreasing significantly until the tips, where it increased again. The isolated Serratia, found to possess chitinolytic activity, was able to release N-acetyl D-glucosamine from cell walls of S. rolfsii. The gene coding for chitinase was cloned into Escherichia coli and the enzyme was uniquely excreted from the bacterium into its growth medium. When S. rolfsii was sprayed by partially purified chitinase produced by the cloned gene, rapid and extensive bursting of the hyphal tips was observed. This chitinase preparation was effective in reducing disease incidence caused by S. rolfsii in beans and R. solani in cotton, under greenhouse conditions. A similar effect was obtained when a viable E. coli cell, containing the plasmid with the chitinase gene (pLCHIA), was applied. It appears that genetic engineering of the lytic enzymes, such as chitinase which play an important role in plant disease control, may improve the efficacy of biocontrol agents.  相似文献   

12.
Two wild-type strains and three benomyl-resistant mutants of the antagonistic ascomycete Talaromyces flavus were crossed in six combinations, two of which yielded hybrid cleistothecia. Parental strains and their ascospore progenies varied in several traits considered to play an important role in the capacity to control soilborne fungal pathogens: extracellular activities of glucose oxidase and cell-wall degrading enzymes, antibiosis towards Verticillium dahliae, and parasitism and biocontrol of Sclerotium rolfsii. A non-Mendelian quantitative mode of inheritance was found for β-1, 3-glucanase and chitinase activities but only the latter exhibited a normal frequency distribution. Some of the progenies exhibited higher glucanase and chitinase activities than those found in the parental strains. Progeny analysis for chitinase, glucanase, cellulase, and glucose oxidase activities revealed no genetic association between any two of these enzymes. Antibiosis was correlated with glucose-oxidase activity in one cross, but not in the other. The ability to reduce bean root rot caused by S. rolfsii was correlated with mycoparasitic activity against S. rolfsii sclerotia in one cross, but not in the other. One out of the 20 progenies tested was able to reduce bean root rot more effectively than its parent strains, thus demonstrating the feasibility of improving a biocontrol agent by conventional breeding.  相似文献   

13.
Trichoderma harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and Macrophomina phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. Hyphae of T. harzianum ALL42 did not show any coiling around Fusarium sp. hyphae suggesting that mycoparasitism may be different among the plant pathogens. In this study, a secretome analysis was used to identify some extracellular proteins secreted by T. harzianum ALL42 after growth on cell wall of M. phaseolina, Fusarium sp., and R. solani. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. A total of 60 T. harzianum ALL42 secreted proteins excised from the gel were analyzed from the three growth conditions. While seven cell wall-induced proteins were identified, more than 53 proteins spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced. Endochitinase, β-glucosidase, α-mannosidase, acid phosphatase, α-1,3-glucanase, and proteases were identified in the gel and also detected in the supernatant of culture.  相似文献   

14.
Sclerotium rolfsii Sacc. causes disease of numerous crop plants worldwide, including groundnuts. Control of this pathogen is difficult as it produces sclerotia which overwinter in the soil to emerge as inoculum and cause disease the following season. Various chemical, biological and cultural control strategies have been suggested and implemented, some of which have reduced disease incidence in the field. No studies have yet been undertaken in South Africa to control this disease on groundnut, either chemically, biologically or by cultural practices. In this study, several strategies were investigated for the control of S. rolfsii on groundnuts. Difenoconazole was identified as a fungicide that could possibly be applied in combination with Trichoderma harzianum, a biological antagonist of S. rolfsii, above carbendazim and flusilazole, and chlorothalonil. Difenoconazole significantly reduced the growth rate of S. rolfsii but not of T. harzianum. The cultivation of infected fields with an inversion plough significantly reduced infection of groundnuts by S. rolfsii and also improved the quality of the produce, while yield was not increased. Lower plant density increased the incidence of disease in an infected field, and is therefore not considered to be a viable form of cultural control.  相似文献   

15.
Three different inoculum forms of Trichoderma koningii were tested in vitro for their ability to parasitize the sclerotia of Sclerotium rolfsii. Tests were conducted under two temperature regimes and three incubation periods. Wheat bran was proved to be the most potent inoculum form of the antagonist in reducing 0the viability of the sclerotia. Microscopical observations revealed the presence of hyphae, chlamydospores and conidia of T. koningii in the medullar tissues of the sclerotia. This is the first report of the effect of different inoculum forms of T. koningii on the sclerotia of S. rolfsii and of propagule (chlamydospores and conidia) formation of the antagonist inside the sclerotia of S. rolfsii.  相似文献   

16.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

17.
The antagonist strains Gliocladium virens G2 and Trichoderma harzianum T3 originally isolated from Pythium suppressive peat, and two benomyl-resistant strains of T. harzianum, T12B and T95, were evaluated as biological control agents of damping-off and root rot of cucumbers in sphagnum peat caused by Pythium ultimum. All strains were equally effective when applied as 1 % peat-bran preparations, whereas the effectiveness of disease control was reduced at higher concentrations of the antagonists. The two wild-type strains were also found to be effective when applied as conidial suspensions, and in this case no reduction in disease control was seen at higher concentrations. G. virens G2 and T. harzianum T12B showed antibiotic activity against P. ultimum in in vitro tests; however there were no signs of mycoparasitism of P. ultimum by any of the antagonist strains.  相似文献   

18.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

19.
The objective of this study was to screen Streptomyces spp. for biological control of root and stem rot (Sclerotium rolfsii) and bacterial wilt (Ralstonia solanacearum), the very destructive diseases of chili pepper in Thailand. About 265 isolates of Streptomyces spp. were tested for their inhibitory effects on S. rolfsii mycelial growth on dual culture plates. Then, 14 promising isolates were further tested for their effects on R. solanacearum growth. Three effective isolates further identified as S. mycarofaciens SS-2-243, S.philanthi RL-1-178 and S. philanthi RM-1-138 were selected and proved to produce both antifungal and antibacterial substances in the culture medium. S. philanthi RM-1-138 strongly inhibited seed germination and seedling growth of chili pepper in laboratory tests. Therefore, it was not used in the following studies. When tested in greenhouse conditions, the efficacy of S. philanthi RL-1-178 in suppressing Sclerotium root and stem rot of chili pepper was approximately equal to that of Trichoderma harzianum NR-1-52 or that of carboxin treatment. S. mycarofaciens SS-2-243 and S. philanthi RL-1-178 suppressed Ralstonia wilt of chili pepper in a way that was similar to streptomycin sulfate treatment and it was observed that T. harzianum NR-1-52 had no effect on the bacterial wilt. Under field conditions where the soil was inoculated with two pathogens, the results showed that S. philanthi RL-1-178 could protect the chili pepper plants from S. rolfsii and R. solanacearum infection better than S. mycarofaciens SS-2-243 or T. harzianum NR-1-52. S. philanthi RL-1-178 treatment resulted in 58.75% survival of chili pepper plants and its efficacy was not significantly different from the carboxin-and-streptomycin sulfate treatment.  相似文献   

20.
The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-ß-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-ß-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-ß-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号