首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial step in the conjugation of ubiquitin to substrate proteins involves the activation of ubiquitin by ubiquitin activating enzyme, E1. Previously, we purified and characterized multiple species of E1 from wheat germ. We now describe the isolation and characterization of a cDNA clone encoding E1 from wheat. This clone (UBA1) was isolated from a cDNA expression library with anti-wheat E1 antibodies. It contained an open reading frame coding for 1051 amino acids and directed the synthesis of a protein that comigrated with a wheat germ E1 of 117 kDa. UBA1 was confirmed as encoding E1 by (i) comparison of the peptide map of the protein product of UBA1 synthesized in Escherichia coli with that of purified E1 from wheat, and (ii) amino acid sequence identity of peptides generated from purified E1 with regions of the derived amino acid sequence of UBA1. The isolation of two additional cDNAs closely related to UBA1 indicated that E1 was encoded by a small gene family in wheat. Nonetheless, a single poly(A+) mRNA size class of 4 kilobases hybridized with UBA1. When expressed in E. coli, the product of UBA1 catalyzed the formation of a thiol ester linkage between ubiquitin and an ubiquitin carrier protein. The ability of E. coli containing UBA1 to synthesize an active protein will allow us to identify domains important for E1 function using in vitro mutagenesis.  相似文献   

2.
UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.   总被引:23,自引:2,他引:21       下载免费PDF全文
All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability.  相似文献   

3.
E2 conjugating enzymes form a thiol ester intermediate with ubiquitin, which is subsequently transferred to a substrate protein targeted for degradation. While all E2 proteins comprise a catalytic domain where the thiol ester is formed, several E2s (class II) have C-terminal extensions proposed to control substrate recognition, dimerization, or polyubiquitin chain formation. Here we present the novel solution structure of the class II E2 conjugating enzyme Ubc1 from Saccharomyces cerevisiae. The structure shows the N-terminal catalytic domain adopts an alpha/beta fold typical of other E2 proteins. This domain is physically separated from its C-terminal domain by a 22-residue flexible tether. The C-terminal domain adopts a three-helix bundle that we have identified as an ubiquitin-associated domain (UBA). NMR chemical shift perturbation experiments show this UBA domain interacts in a regioselective manner with ubiquitin. This two-domain structure of Ubc1 was used to identify other UBA-containing class II E2 proteins, including human E2-25K, that likely have a similar architecture and to determine the role of the UBA domain in facilitating polyubiquitin chain formation.  相似文献   

4.
Ubiquitin carrier proteins (E2s) are involved in the covalent attachment of ubiquitin to a variety of cellular target proteins in eukaryotes. Here, we report the cloning of genes from wheat and Arabidopsis thaliana that encode 16-kDa E2s and a domain analysis of E2s by in vitro mutagenesis. The genes for E216kDa, which we have designated wheat and At UBC1, encode proteins that are only 33% identical (58% similar) with a 23-kDa E2 from wheat (encoded by the gene now designated wheat UBC4), but are 63% identical (82% similar) with the E2 encoded by the Saccharomyces cerevisiae DNA repair gene, RAD6. Unlike the proteins encoded by RAD6 and wheat UBC4, the UBC1 gene products lack acidic C-terminal domains extending beyond the conserved core of the proteins and are incapable of efficient in vitro ligation of ubiquitin to histones. From enzymatic analysis of the UBC1 and UBC4 gene products mutagenized in vitro, we have identified several domains important for E2 function, including the active site cysteine and N-terminal and C-terminal domains. Cysteine residues 88 and 85 in the UBC1 and UBC4 gene products, respectively, are necessary for formation of the ubiquitin-E2 thiol ester intermediate. Whereas the UBC1 gene product does not require its additional cysteine residue at position 116 for thiol ester formation, alteration of cysteine 143 in the UBC4 gene product greatly diminishes this ability. The N terminus of UBC1 contains two domains that affect activity: a proximal region containing hydroxylated and uncharged residues whose removal increases the rate of thiol ester formation and a distal tract rich in basic residues. Deletion or substitution of these basic residues with neutral residues diminishes the rate of thiol ester formation. We have demonstrated also that C-terminal extensions can function to confer substrate specificity to E2s. When the acidic extension was deleted from UBC4, the protein was unable to efficiently conjugate ubiquitin to histones in vitro. Furthermore, fusion of the UBC4 acidic extension to the C terminus of UBC1 resulted in a chimeric protein capable of efficient histone conjugation, as did fusion of short tracts of alternating aspartate and glutamate residues. This result suggests that the target protein specificity of E2s can be altered by the addition of appropriate C-terminal extensions, thus providing a way to modify the selectivity of the ubiquitin system.  相似文献   

5.
The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated.  相似文献   

6.
Angelman syndrome is a severe neurological disorder characterized by mental retardation, absent speech, ataxia, seizures, and hyperactivity. The gene affected in this disorder is UBE3A, the gene encoding the E6-associated protein (E6AP) ubiquitin-protein ligase. Most patients have chromosomal deletions that remove the entire maternal allele of UBE3A. However, a small subset of patients have E6AP point mutations that result in single amino acid changes or short in-frame deletions that still allow translation of a full-length protein. By studying these point mutations in E6AP, we found a strong correlation between Angelman-associated mutations and a loss of E3 ubiquitin ligase activity. Interestingly the point mutations affect E6AP activity in different ways. Some mutant proteins cannot form thiol ester intermediates with ubiquitin, others retain the thiol ester formation activity but cannot efficiently transfer ubiquitin to a substrate, and still others are unstable in cells. Our results suggest that the loss of E6AP catalytic activity and likely the improper regulation of E6AP substrate(s) are important in the development of Angelman syndrome.  相似文献   

7.
E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-adenylate phosphoester and a ubiquityl-enzyme thioester. However, the mechanism of thioester bond formation and its subsequent transfer to an E2 enzyme remains poorly understood. We have determined the crystal structure of the human UFM1 (ubiquitin-fold modifier 1) E1-activating enzyme UBA5, bound to ATP, revealing a structure that shares similarities with both large canonical E1 enzymes and smaller ancestral E1-like enzymes. In contrast to other E1 active site cysteines, which are in a variably sized domain that is separate and flexible relative to the adenylation domain, the catalytic cysteine of UBA5 (Cys250) is part of the adenylation domain in an α-helical motif. The novel position of the UBA5 catalytic cysteine and conformational changes associated with ATP binding provides insight into the possible mechanisms through which the ubiquityl-enzyme thioester is formed. These studies reveal structural features that further our understanding of the UBA5 enzyme reaction mechanism and provide insight into the evolution of ubiquitin activation.  相似文献   

8.
A novel mutation which caused a structural change in a lipoprotein in the outer-membrane has been found in Escherichia coli K-12. The lipoprotein of the wild-type strain is known to have a peculiar amino terminal structure: glycerylcysteine with two fatty acids attached by ester linkages and one fatty acid by an amide linkage. In contrast to the wild-type lipoprotein, the mutant lipoproteins is isolated from the E. coli envelope as a dimer of molecular weight of about 15,000. The dimer can be reduced by mercaptoethanol to the lipoprotein monomer of molecular weight of about 7,500. The monomer has a free thiol group which is susceptible to monoiodacetie mutant lipoprotein is extremely low in comparison with that into the wild-type lipoprotein. These results suggest that the mutant is defective in transferring a glycerol group to the thiol group of the amino terminal cysteine residue of the lipoprotein. The gene responsible for this modification reaction has been located at 36.5 min on the E. coli chromosome.  相似文献   

9.
Zhao X  Miller JR  Cronan JE 《Biochemistry》2005,44(50):16737-16746
The lipB gene of Escherichia coli encodes an enzyme (LipB) that transfers the octanoyl moiety of octanoyl-acyl carrier protein (octanoyl-ACP) to the lipoyl domains of the 2-oxo acid dehydrogenases and the H subunit of glycine cleavage enzyme. We report that the LipB reaction proceeds through an acyl-enzyme intermediate in which the octanoyl moiety forms a thioester bond with the thiol of residue C169. The intermediate was catalytically competent in that the octanoyl group of the purified octanoylated LipB was transferred either to an 87-residue lipoyl domain derived from E. coli pyruvate dehydrogenase or to ACP (in the reversal of the physiological reaction). The octanoylated LipB linkage was cleaved by thiol reagents and by neutral hydroxylamine, strongly suggesting a thioester bond. Separation and mass spectral analyses of the peptides of the unmodified and octanoylated proteins showed that each of the assigned peptides of the two proteins had identical masses, indicating that none of these peptides were octanoylated. However, the one major peptide that we failed to recover was that predicted to contain all three LipB cysteine residues. These three cysteine residues were therefore targeted for site-directed mutagenesis and only C169 was found to be essential for LipB function in vivo. The C169S protein had no detectable activity whereas the C169A protein retained trace activity. Surprisingly, both proteins lacking C169 formed an octanoyl-LipB species, although neither was catalytically competent. The octanoyl-LipB species formed by the C169S protein was resistant to neutral hydroxylamine treatment, consistent with formation of an ester linkage to the serine hydroxyl group. The octanoyl-C169A LipB species was probably acylated at C147. LipB species that lacked all three cysteine residues also formed a catalytically incompetent octanoyl adduct, indicating the presence of a reactive side chain other than a cysteine thiol that lies adjacent to the active site.  相似文献   

10.
A conserved catalytic residue in the ubiquitin-conjugating enzyme family   总被引:8,自引:0,他引:8  
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.  相似文献   

11.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

12.
Dou T  Gu S  Liu J  Chen F  Zeng L  Guo L  Xie Y  Mao Y 《Molecular biology reports》2005,32(4):265-271
Ubiquitin and other ubiquitin-like proteins play important roles in post-translational modification. They are phylogenetically well-conserved in eukaryotes. Activated by other proteins, ubiquitin and ubiquitin-like proteins can covalently modify target proteins. The enzymes responsible for the activation of this modification have been known to include UBA1, SAE2, UBA3, SAE1 and ULA1. Here we report a new ubiquitin activating enzyme like cDNA, named ubiquitin activating enzyme E1-domain containing 1 (UBE1DC1), whose cDNA is 2654 base pairs in length and contains an open reading frame encoding 404 amino acids. The UBE1DC1 gene consists of 12 exons and is located at human chromosome 3q22. The result of RT-PCR showed that UBE1DC1 is expressed in most of human tissues. These two authors contributed equally to this paper. The nucleotide sequence reported in this paper has been submitted to GenBank under accession number AY253672.  相似文献   

13.
The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub). To understand the mechanism by which the UBA domains specifically interact with Ub with different affinities, we determined the solution NMR structures of these two UBA domains, cUBA from human c-Cbl and UBAb from Cbl-b. Their structures show that these two UBA domains share the same fold, a compact three-helix bundle, highly resembling the typical UBA fold. Chemical shift perturbation experiments reveal that the helix-1 and loop-1 of UBAb form a predominately hydrophobic surface for Ub binding. By comparing the Ub-interacting surface on UBAb and its counterpart on cUBA, we find that the hydrophobic patch on cUBA is interrupted by a negatively charged residue Glu12. Fluorescence titration data show that the Ala12Glu mutant of UBAb completely loses the ability to bind Ub, whereas the mutation disrupting the dimerization has no significant effect on Ub binding. This study provides structural and biochemical insights into the Ub binding specificities of the Cbl UBA domains, in which the hydrophobic surface distribution on the first helix plays crucial roles in their differential affinities for Ub binding. That is, the amino acid residue diversity in the helix-1 region, but not the dimerization, determines the abilities of various UBA domains binding with Ub.  相似文献   

14.
1. The single highly reactive (class I) thiol group per 80000-mol.wt. subunit of skeletal-muscle phosphofructokinase was specifically carboxymethylated with iodo[2-14C]acetate, and after denaturation the remaining thiol groups were carboxymethylated with bromo[2-3H]acetate. After tryptic digestion and peptide 'mapping' it was found that the 14C radioactivity was in a spot that did not contain significant amounts of 3H radioactivity, so it is concluded that there is not a second, 'buried' cysteine residue within a sequence identical with that of the class-I cysteine peptide. 2. The total number of tryptic peptides as well as the number of those containing cysteine, histidine or tryptophan were inconsistent with the smallest polypeptide chain of phosphofructokinase (mol.wt. about 80000) being composed of two identical amino acid sequences. 3. The amino acid sequence of the tryptic peptide containing the class-I thiol group was shown to be Cys-Lys-Asp-Phe-Arg. This sequence is compared with part of the sequence containing the highly reactive thiol group of phosphorylase.  相似文献   

15.
Ubiquitin-conjugating enzyme variants share significant sequence similarity with typical E2 (ubiquitin-conjugating) enzymes of the protein ubiquitination pathway but lack their characteristic active site cysteine residue. The MMS2 gene of Saccharomyces cerevisiae encodes one such ubiquitin-conjugating enzyme variant that is involved in the error-free DNA postreplicative repair pathway through its association with Ubc13, an E2. The Mms2-Ubc13 heterodimer is capable of linking ubiquitin molecules to one another through an isopeptide bond between the C terminus and Lys-63. Using highly purified components, we show here that the human forms of Mms2 and Ubc13 associate into a heterodimer that is stable over a range of conditions. The ubiquitin-thiol ester form of the heterodimer can be produced by the direct activation of its Ubc13 subunit with E1 (ubiquitin-activating enzyme) or by the association of Mms2 with the Ubc13-ubiquitin thiol ester. The activated heterodimer is capable of transferring its covalently bound ubiquitin to Lys-63 of an untethered ubiquitin molecule, resulting in diubiquitin as the predominant species. In (1)H (15)N HSQC ((1)H (15)N heteronuclear single quantum coherence) NMR experiments, we have mapped the surface determinants of tethered and untethered ubiquitin that interact with Mms2 and Ubc13 in both their monomeric and dimeric forms. These results have identified a surface of untethered ubiquitin that interacts with Mms2 in the monomeric and heterodimeric form. Furthermore, the C-terminal tail of ubiquitin does not participate in this interaction. These results suggest that the role of Mms2 is to correctly orient either a target-bound or untethered ubiquitin molecule such that its Lys-63 is placed proximally to the C terminus of the ubiquitin molecule that is linked to the active site of Ubc13.  相似文献   

16.
Wang M  Pickart CM 《The EMBO journal》2005,24(24):4324-4333
Individual ubiquitin (Ub)-protein ligases (E3s) cooperate with specific Ub-conjugating enzymes (E2s) to modify cognate substrates with polyubiquitin chains. E3s belonging to the Really Interesting New Gene (RING) and Homologous to E6-Associated Protein (E6AP) C-Terminus (HECT) domain families utilize distinct molecular mechanisms. In particular, HECT E3s, but not RING E3s, form a thiol ester with Ub before transferring Ub to the substrate lysine. Here we report that different HECT domain E3s can employ distinct mechanisms of polyubiquitin chain synthesis. We show that E6AP builds up a K48-linked chain on its HECT cysteine residue, while KIAA10 builds up K48- and K29-linked chains as free entities. A small region near the N-terminus of the conserved HECT domain helps to bring about this functional distinction. Thus, a given HECT domain can specify both the linkage of a polyubiquitin chain and the mechanism of its assembly.  相似文献   

17.
18.
M K Cha  H K Kim    I H Kim 《Journal of bacteriology》1996,178(19):5610-5614
A novel thioredoxin-linked thiol peroxidase (Px) from Escherichia coli has been reported previously (M. K. Cha, H. K. Kim, and I. H. Kim, J. Biol. Chem. 270:28635-28641, 1995). In an attempt to perform physiological and biochemical characterizations of the thiol Px, a thiol Px null (tpx) mutant and a functional-residue mutant of thiol Px were produced. The tpx mutant was viable in aerobic culture but grew more slowly than the wild-type cells. The difference in growth rate became more pronounced when oxidative-stress-inducing reagents, such as peroxides and paraquat, were added to the cultures. The viability of the individual tpx mutant under oxidative stress was much lower than that of wild-type cells. tpx mutants growing aerobically respond to paraquat with a sixfold greater induction of Mn-superoxide dismutase than that of the wild-type cells. The deduced amino acid sequence of the thiol Px was found to be from 42 to 72% identical to the sequences of proteins from Haemophilus influenzae (ToxR regulon), Vibrio cholerae (ToxR regulon), and three kinds of streptococci (coaggregation-mediating adhesins), suggesting that they all belong to a new thiol Px family. Alignment of the amino acid sequences of the thiol Px family members showed that one cysteine, which corresponds to Cys-94 in E. coli thiol Px, is perfectly conserved. The substitution of serine for this cysteine residue resulted in complete loss of Px activity. These results suggest that the members of the thiol Px family, including E. coli thiol Px, have a functional cysteine residue and function in vivo as peroxidases.  相似文献   

19.
The palmitoylation site of the membrane glycoprotein E1 of Semliki Forest virus (SFV) has been identified by chemical analysis of an acylpeptide. 3H-Palmitoylated E1 isolated from SFV grown in baby hamster kidney cells was digested with chymotrypsin and the resulting peptides subjected to high performance liquid chromatography on a wide-pore column. The 3H-acylated peptide fraction peaked at above 60% 2-propanol in the eluent, indicating its hydrophobic character. Polyacrylamide gel electrophoresis analysis revealed a molecular weight of about Mr = 6000 for the radiolabeled peptide. Manual sequencing of this material by the 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate procedure on solid phase revealed the amino-terminal sequence Ala-Ala-Ser-His-Ser-Asn-Val-Val-Phe-Pro. The same peptide also labels with [35S]cysteine. Comparison with the deduced amino acid sequence of E1 revealed that the palmitoylated peptide contains at least 43 amino acid residues, and thus includes the membrane spanning region down to the only cysteine residue five positions up from the carboxyl terminus of E1. Since [3H]palmitic acid was cleaved from E1 with thiol reagents, and since the peptide labels with [14C]iodoacetamide only after the release of fatty acids by hydroxylamine treatment, cysteine in position 433 represents the palmitoylation site in SFV E1.  相似文献   

20.
The covalent ligation of the 8.6-kDa polypeptide ubiquitin to various cellular target proteins is believed to represent a fundamental regulatory process. In this mechanism, the ATP-coupled activation and subsequent ligation of ubiquitin are catalyzed by separate enzymes (E1 and E3, respectively) functionally linked by ubiquitin carrier protein (E2). Carrier protein has been proposed to constitute a family of isozymes having molecular masses of 14, 17, 20, 24, and 32 kDa whose role is to shuttle activated polypeptide in the form of a high-energy thiol ester intermediate to the carboxyl terminus of ubiquitin. Using a combination of covalent affinity and high performance liquid chromatographic methods, the pututive E2 isozymes have been purified to apparent homogeneity. The E2(14kDa) isozyme resolved into two forms differing in net charge at pH 7.5. All of the E2 isozymes contained only one thiol ester site except for E2(17kDa) and E2(20kDa) which were capable of forming two such adducts per subunit. Thiol ester formation was rapid for the E2 isozymes and required the presence of activating enzyme. In contrast, the reverse reaction of thiol ester transfer from E2 to E1 was kinetically significant for only E2(14kDa), E2(20kDa), and E2(24kDa). The stability of E2(17kDa) and E2(32kDa) to such trapping may reflect a marked shift in binding affinity to E1 upon thiol ester formation. In addition, differential rates for thiol ester formation to each subunit of dimeric E2(14kDa) was also noted. The E2(14kDa) isoforms were approximately 10-fold more active in E3-dependent ubiquitin-protein ligation than either E2(20kDa) or E2(32kDa). Neither E2(17kDa) nor E2(24kDa) supported this reaction. In addition, the thiol ester formed to E2(14kDa) was inherently more reactive since its second order rate constant for the E3-independent transfer of ubiquitin to the small molecular weight nucleophile dithiothreitol was an order of magnitude greater than found for the other isozymes. If these proteins constitute a family of isozymes, they exhibit considerable catalytic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号