首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

2.
通过DEAESephadexA 5 0阴离子交换柱 ,SephadexG 75分子筛 ,ResourseQ阴离子交换柱三步层析从湖南产的烙铁头蛇毒中分离、纯化得到一个L 氨基酸氧化酶 (TM LAO) ,它由两个非共价的亚基组成 ,每个亚基的分子量为 5 5kD。与台湾产的烙铁头蛇毒L 氨基酸氧化酶分子量 ( 70kD)不同。TM LAO的N末端氨基酸序列是ADNKNPLEECFRETNYEEFLEIAR ,与报道的蝰科的L 氨基酸氧化酶的相似性比眼镜蛇科的要高。TM LAO能抑制大肠杆菌、金黄色葡萄球菌和痢疾杆菌的生长 ,杀死肿瘤细胞以及诱导血小板聚集。这些活性能被过氧化氢酶所抑制 ,说明TM LAO生理学功能主要是通过酶反应产生的过氧化氢 (H2 O2 )介导的  相似文献   

3.
Amphotericin B (AmB) has been shown to have both immunosuppressive and -enhancing effects, making its precise nature of action enigmatic. In the present study, we found that AmB inhibited concanavalin A (Con A)-induced T cell proliferation if added within first 30 min of stimulation, after which inhibition began to diminish rapidly. However, AmB did not inhibit T-cell proliferation induced by a combination of PMA and ionomycin. AmB inhibition of Con A-induced proliferation was completely overcome by cyclooxygenase inhibitor ibuprofen ([alpha-methyl-4-(isobutyl)phenylacetic acid]) and H(2)O(2) scavenger catalase. In fact, in the presence of ibuprofen and catalase, AmB enhanced, instead of suppressing, Con A-induced proliferation in a dose-dependent way. The effect of catalase was limited to the removal of extracellular H(2)O(2) only, as the enzyme did not enter the cells. AmB stimulated H(2)O(2) production by macrophages, but not by a lymphocyte population, which was inhibited by ibuprofen. Our T-cell preparation contained about 3% macrophages, and AmB inhibition of proliferation was further pronounced by increasing the macrophage number by as little as 1%. Finally, AmB inhibition of Con A-induced T-cell proliferation was completely overcome by 2-mercaptoethanol. On the basis of these results, we suggest that AmB stimulates H(2)O(2) production by macrophages through the activation of the cyclooxygenase pathway of arachidonate metabolism. H(2)O(2) then inhibits Con A-induced T-cell proliferation by interfering with an early step of the T-cell receptor signaling pathway through the oxidative modification of some signaling proteins. Our results also show that AmB enhances T-cell proliferation, which can be seen only after blocking its inhibitory effect.  相似文献   

4.
We have investigated the possible roles of phospholipase D (PLD) and RhoA in the production of intracellular H2O2 and actin polymerization in response to lysophosphatidic acid (LPA) in Rat-2 fibroblasts. LPA increased intracellular H2O2, with a maximal increase at 30 min, which was blocked by the catalase from Aspergillus niger. The LPA-stimulated production of H2O2 was inhibited by 1-butanol or PKC-downregulation, but not by 2-butanol. Purified phosphatidic acid (PA) also increased intracellular H2O2 and the increase was inhibited by the catalase. The role of RhoA was studied by the scrape-loading of C3 transferase into the cells. The C3 toxin, which inhibited stress fiber formation stimulated by LPA, blocked the H2O2 production in response to LPA or PA, but had no inhibitory effect on the activation of PLD by LPA. Exogenous H2O2 increased F-actin content by stress fiber formation. In addition, catalase inhibited actin polymerization activated by LPA, PA, or H2O2, indicated the role of H2O2 in actin polymerization. These results suggest that LPA increased intracellular H2O2 by the activation of PLD and RhoA, and that intracellular H2O2 was required for the LPA-stimulated stress fiber formation.  相似文献   

5.
Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.  相似文献   

6.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   

7.
L-Amino acid oxidase (LAO, EC 1.4.3.2) is widely distributed in snake venom, and induces apoptosis in vascular endothelial cells, causing prolonged bleeding from vessel walls at bite sites. The effect of snake venom LAOs on platelet function is controversial. Further, we have little information on their structural characterization. We purified M (mamushi)-LAO, a single-chain glycoprotein with a molecular mass of 60 kDa and a pI of 4.9, from Agkistrodon halys blomhoffii (Japanese mamushi) venom, and determined the N-terminal and several internal amino acid sequences of this enzyme. Molecular cloning based on these data was conducted to elucidate its full-length cDNA structure (2192 nucleotides), which includes a putative 18 amino acid residue signal peptide and a 504 residue mature subunit. The predicted M-LAO translation product shares 87.3% identity with that of Crotalus adamanteus (Southeastern diamondback rattlesnake) LAO. M-LAO, up to a final concentration of 2.6 microM, inhibited both agonist- and shear stress-induced platelet aggregation (SIPA) dose-dependently. In agonist-induced platelet aggregation, M-LAO predominantly inhibited the second aggregation, but with a marginal inhibition of the first. In SIPA, the inhibition was more dramatic under low-shear stress than high-shear stress, and was enhanced by the presence of L-leucine, a substrate of this enzyme. Catalase, a H2O2 scavenger, totally quenched such enhancement. These results suggest that M-LAO inhibits the interaction between activated platelet integrin alphaIIb/beta3 and fibrinogen through the continuous generation of H2O2, and may contribute to prolonged bleeding from the vessels at snake bite sites.  相似文献   

8.
Detection of catalase in rat heart mitochondria.   总被引:1,自引:0,他引:1  
The presence of heme-containing catalase in rat heart mitochondria (20 +/- 5 units/mg) was demonstrated by biochemical and immunocytochemical analysis. Intact rat heart mitochondria efficiently consumed exogenously added H2O2. The rate of H2O2 consumption was not influenced by succinate, glutamate/malate, or N-ethylmaleimide but was significantly inhibited by cyanide. Hydrogen peroxide decomposition by mitochondria yielded molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism. Mitochondrial fractionation studies and quantitative electron microscopic immunocytochemistry revealed that most catalase was matrix-associated. Electrophoretic analysis and Western blotting of the mitochondrial matrix fraction indicated the presence of a protein with similar electrophoretic mobility to bovine and rat liver catalase and immunoreactive to anti-catalase antibody. Myocardial tissue has a lower catalase-specific activity and a greater mitochondrial H2O2 production/g of tissue than most organs. Thus catalase, representing 0.025% of heart mitochondrial protein, is important for detoxifying mitochondrial derived H2O2 and represents a key antioxidant defense mechanism for myocardial tissue.  相似文献   

9.
Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor   总被引:4,自引:0,他引:4  
The aim of this study was to elucidate cellular mechanisms involved in ceramide-induced apoptosis and its attenuation by hepatocyte growth factor (HGF). Human retinal pigmented epithelial cells (RPE) incubated with C2 ceramide accumulated reactive oxygen species (ROS) in mitochondria and underwent apoptosis in a dose-dependent manner. Ceramide-treated cells showed increased caspase-3 activation and an increase in mitochondrial membrane permeability transition (MPT). Low doses of H2O2 (100 microM) alone induced negligible apoptosis; however, ceramide-induced apoptosis was significantly enhanced by co-incubation with H2O2 (100 microM). Furthermore, ceramide treatment significantly decreased catalase enzymatic activity and protein expression. HGF pretreatment (20 ng/ml) significantly inhibited ceramide-induced apoptosis and reduced the accumulation of ROS, the activation of caspase-3, and the increase in MPT and prevented the reduction in catalase activity and expression. Together, the data suggest that ceramide induces apoptosis in RPE cells by increasing ROS production, MPT, and caspase-3 activation. The ceramide effect is potentiated by H2O2 and associated with a reduction in catalase activity, suggesting that catalase plays a central role in regulating this apoptotic response. The ability of HGF to attenuate these effects demonstrates its effectiveness as an antioxidant growth factor.  相似文献   

10.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

11.
We have investigated the mechanisms by which transforming growth factor-beta (TGF-beta) increased intracellular H2O2 in Swiss 3T3 fibroblasts. Increase of intracellular H2O2 by TGF-beta was maximal at 30 min and blocked by catalase from Aspergillus niger. Scrape-loading of C3 transferase, which down-regulated RhoA, inhibited the production of H2O2 in response to TGF-beta. TGF-beta stimulated release of arachidonic acid, which was completely inhibited by mepacrine, a phospholipase A2 inhibitor. Mepacrine also blocked the increase of H2O2 by TGF-beta. In addition, arachidonic acid increased intracellular H2O2. Furthermore, TGF-beta stimulated stress fibre formation, which was blocked by catalase, without membrane ruffling. Catalase also inhibited stimulation of thymidine incorporation by TGF-beta. These results suggested that TGF-beta increased intracellular H2O2 through RhoA and phospholipase A2, and also suggested that intracellular H2O2 was required for the stimulation of stress fibre formation and DNA synthesis in response to TGF-beta.  相似文献   

12.
Toxicity to the central nervous system (CNS) by hyperbaric oxygen (HBO) presumably relates to increased production of reactive oxygen species. The sites of generation of reactive oxygen species during HBO, however, have not been fully characterized in the brain. We investigated the relationship between regional generation of hydrogen peroxide (H2O2) in the brain in the presence of an irreversible inhibitor of catalase, aminotriazole (ATZ), and protection from CNS O2 toxicity by a monoamine oxidase (MAO) inhibitor, pargyline. At 6 ATA of oxygen, pargyline significantly protected rats from CNS O2 toxicity whereas ATZ enhanced O2 toxicity. In animals pretreated with ATZ, HBO inactivated 21-40% more catalase than air exposure in the six brain regions studied. Because ATZ-mediated inactivation of catalase was H2O2 dependent, the decrease in catalase activity during hyperoxia was proportional to the intracellular production of H2O2. Pargyline, administered 30 min before HBO, inhibited MAO by greater than 90%, prevented ATZ inhibition of catalase activity during HBO, and reversed the augmentation of CNS O2 toxicity by ATZ. These findings indicate that H2O2 generated by MAO during hyperoxia is important to the pathogenesis of CNS O2 toxicity in rats.  相似文献   

13.
We investigated the mechanisms of apoptosis and DNA damage induced by aminosugars in relation to their antitumor actions. The order of cytotoxic effects of aminosugars was D-mannosamine (ManN) > D-galactosamine (GalN) > D-glucosamine (GlcN). A comparison of the frequency of apoptotic cells showed the same order. DNA ladders were formed by only ManN and the formation of DNA ladders was inhibited by a caspase inhibitor. Pulsed-field gel electrophoresis showed that ManN caused cellular DNA cleavage at a lower concentration than those causing apoptosis. Cellular DNA cleavage was inhibited by catalase and enhanced by a catalase inhibitor. Flow cytometry showed that ManN enhanced the production of intracellular peroxides. These results suggest that ManN-induced apoptosis is preceded by H2O2-mediated DNA damage. The order of the extent of damage to 32P-labeled DNA fragments by aminosugars plus Cu(II) was ManN > GalN > GlcN. The DNA damage was inhibited by catalase and bathocuproine, suggesting that H2O2 reacts with Cu(I) to form the metal-peroxide complex capable of causing DNA damage. Two mechanisms of H2O2 generation from aminosugars were proposed: one is the major pathway to form a dioxo compound and NH4+; the other is the minor pathway to form a pyrazine derivative through the condensation of two molecules of an aminosugar. The order of reactivity to generate these products was ManN > GalN > GlcN. On the basis of these results, it is concluded that aminosugars, especially ManN, produce H2O2 to cause DNA damage, which mediates apoptosis resulting in tumor growth inhibition.  相似文献   

14.
Hydrogen peroxide (H2O2) is known to be involved in drug-induced and ischemic proximal tubular damage. The purpose of this study was to elucidate the effects of hydrogen peroxide on organic anion transport mediated by human organic anion transporters 1 and 3 (hOAT1 and hOAT3), which are localized at the basolateral side of the proximal tubule. For this purpose, we established and utilized the second segment of the proximal tubule cells from mice stably expressing hOAT1 or hOAT3 (S2 hOAT1 or S2hOAT3, respectively). H2O2 induced a dose- and a time-dependent decrease in organic anion transport mediated by hOAT1 and hOAT3. Kinetic analysis revealed that H2O2 decreased the Vmax, but not Km of organic anion transport both in S2hOAT1 and S2hOAT3. The effects of gentamicin, known to induce proximal tubular damage via the production of H2O2, on the organic anion transporters were also examined. Gentamicin induced a significant decrease in organic anion transport in S2hOAT1 but not S2hOAT3. H2O2-induced decrease in organic anion transport was significantly inhibited by pretreatment with pyruvate as well as catalase, whereas the gentamicin-induced decrease was significantly inhibited by pretreatment with pyruvate but not with catalase. In conclusion, these results suggest that H2O2, which is produced during tubular injuries, downregulates organic anion transport mediated by both hOAT1 and hOAT3, leading to further modulation of pathophysiology.  相似文献   

15.
Effect of heme on Bacteroides distasonis catalase and aerotolerance   总被引:4,自引:1,他引:3       下载免费PDF全文
Parallel increases in intracellular catalase activity and resistance to extracellular H2O2 and to hyperbaric O2 toxicity were observed when Bacteroides distasonis VPI 4243 (ATCC 8503, type strain) was grown in either complex or defined medium containing graded amounts of hemin. Virtually all of the cells with high catalase activity (greater than 200 U/mg) remained viable upon exposure at 37 degrees C to 100-lb/in2 O2 on agar surfaces for 1 h, whereas low-catalase cells (less than 10 U/mg) lost 1.2 log units of viable cells during that treatment. Upon exposure to 500 microM H2O2, high-catalase cells lost 0.4 log units of the initial viable colonies during the same period in which low-catalase cells lost 3 log units of viable cells. The superoxide dismutase activity was the same in each test culture. These data support the role of intracellular catalase in protecting B. distasonis from oxidative damage resulting from hyperbaric oxygenation or H2O2 exposure. Catalase activity elicited by adding hemin to cells grown previously in medium lacking hemin was inhibited only 40% by prior incubation of the cells with chloramphenicol (30 micrograms/ml) and only 22% with rifampin (5 micrograms/ml). A model which is consistent with these data involves the production of an apocatalase in cells grown in low-hemin medium. Addition of hemin to the cells would result in a rapid chloramphenicolor rifampin-insensitive stimulation of catalase activity followed by further de novo biosynthesis of catalase.  相似文献   

16.
The kinetic effects of hydrogen peroxide (H2O2) on cultured endothelial cells isolated from bovine carotid artery were studied. The cytoprotective effects of glutathione (GSH) on H2O2-induced cell injury were also investigated. H2O2-induced a dose- and time-dependent cell injury in cultured endothelial cells. H2O2-induced cell injury was blocked by simultaneous treatment by catalase, but not by superoxide dismutase. H2O2 also induced endogenous PGI2 biosynthesis, and the maximum PGI2 production was reached after 1 h treatment. Stimulation of PGI2 production was parallel with arachidonate release from H2O2-treated cells. However the prostaglandin biosynthesis enzyme activity in cells was inhibited by H2O2 treatment. When the cells were treated with GSH, the intracellular GSH reached a plateau after 3 h treatment. Both H2O2-induced cell injury and PGI2 production were significantly inhibited by the 3 h pretreatment with GSH. The cytoprotective effect of GSH was completely inhibited by buthionine sulfoximine which is a specific inhibitor of gamma-glutamylcysteine synthetase. The results indicate that the cytoprotective effect of GSH on H2O2-induced cell injury in cultured bovine carotid artery endothelial cells depends on the increase in intracellular GSH content.  相似文献   

17.
To define the mechanism of arsenite-induced tumor promotion, we examined the role of reactive oxygen species (ROS) in the signaling pathways of cells exposed to arsenite. Arsenite treatment resulted in the persistent activation of p70(s6k) and extracellular signal-regulated kinase 1/2 (ERK1/2) which was accompanied by an increase in intracellular ROS production. The predominant produced appeared to be H(2)O(2), because the arsenite-induced increase in dichlorofluorescein (DCF) fluorescence was completely abolished by pretreatment with catalase but not with heat-inactivated catalase. Elimination of H(2)O(2) by catalase or N-acetyl-L-cysteine inhibited the arsenite-induced activation of p70(s6k) and ERK1/2, indicating the possible role of H(2)O(2) in the arsenite activation of the p70(s6k) and the ERK1/2 signaling pathways. A specific inhibitor of p70(s6k), rapamycin, and calcium chelators significantly blocked the activation of p70(s6k) induced by arsenite. While the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 completely abrogated arsenite activation of p70(s6k), ERK1/2 activation by arsenite was not affected by these inhibitors, indicating that H(2)O(2) might act as an upstream molecule of PI3K as well as ERK1/2. Consistent with these results, none of the inhibitors impaired H(2)O(2) production by arsenite. DNA binding activity of AP-1, downstream of ERK1/2, was also inhibited by catalase, N-acetyl-L-cysteine, and the MEK inhibitor PD98059, which significantly blocked arsenite activation of ERK1/2. Taken together, these studies provide insight into mechanisms of arsenite-induced tumor promotion and suggest that H(2)O(2) plays a critical role in tumor promotion by arsenite through activation of the ERK1/2 and p70(s6k) signaling pathways.  相似文献   

18.
Patients with increased haemolytic haemoglobin (Hb) have 10-20-times greater incidence of cardiovascular mortality. The objective of this study was to evaluate the role of Hb peroxidase activity in LDL oxidation. The role of Hb in lipid peroxidation, H(2)O(2) generation and intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed using NaN(3), a peroxidase inhibitor, catalase, a H(2)O(2) decomposing enzyme and human umbilical vein endothelial cells (HUVECs), respectively. Hb induced H(2)O(2) production by reacting with LDL, linoleate and cell membrane lipid extracts. Hb-induced LDL oxidation was inhibited by NaN(3) and catalase. Furthermore, Hb stimulated ICAM-1 and VCAM-1 expression, which was inhibited by the antioxidant, probucol. Thus, the present study suggests that the peroxidase activity of Hb produces atherogenic, oxidized LDL and oxidized polyunsaturated fatty acids (PUFAs) in the cell membrane and reactive oxygen species (ROS) formation mediated Hb-induced ICAM-1 and VCAM-1 expression.  相似文献   

19.
C Auclair  E Cramer  J Hakim  P Boivin 《Biochimie》1976,58(11-12):1359-1366
Various factor affecting NADPH-oxidation by resting human leucocyte granules (LG) at acid pH, have been investigated. It was found that: 1) oxidation of NADPH by LG was increasingly inhibited by increased cyanide concentrations in the medium and was abolished by 4 mM cyanide. 2) with or without cyanide in the incubation medium, LG omitted, Mn++ in the presence of NADPH induced superoxide anion (O- WITH 2) production, as evidenced by oxygen consumption and H2O2 production, which were abolished (in the absence of cyanide) by cytochrome C (a potent O- with 2 scavenger). 3) Both NADPH oxidation in the presence of 2 mM cyanide (cyanide-resistant) and in its absence (cyanide-sensitive) by LG occurred only in the presence of Mn++, and both were inhibited by superoxide dismutase. 4) Cyanide-resistant NADPH oxidation by LG generated H2O2, was inhibited by H2O2 and was not modified by "active" catalase. The ratio of cyanide-resistant NADPH oxidation/O2 uptake was 1 up to 1.25 mM NADPH, and increased above this concentration. 5) Cyanide-sensitive NADPH oxidation was inhibited by catalase and increased upon addition of H2O2. The ratio of cyanide-sensitive NADPH oxidation/O2 uptake was 2. It was concluded that after initiation by O - with 2, produced independently of LG, two sequential types of LG dependent NADPH oxidations occur. First, an O - with 2-dependent protein mediated NADPH oxidation (cyanide-resistant) which generates H2O2 and O - with 2 occurs. Second, NADPH peroxidation (cyanide-sensitive) which utilizes H2O2 takes place.  相似文献   

20.
Xanthine/xanthine oxidase and H2O2 stimulated sugar transport. Application of superoxide dismutase and catalase to the cells showed an inhibitory effect on these agent-stimulated sugar transports. Addition of amiloride and 4-acetamide-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), which abolish the cytoplasmic alkalinization, inhibited the stimulation of sugar transport by xanthine/xanthine oxidase in the presence of catalase. The calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine inhibited H2O2-stimulated sugar transport. These results suggest that O2- stimulates sugar transport in an intracellular pH-dependent manner and that H2O2 stimulates sugar transport in a calcium-calmodulin-dependent manner. These mechanisms may be involved in sugar-transport stimulation in mouse fibroblast BALB/3T3 cells by the tumor-promoting phorbol ester phorbol-12,13-dibutyrate and insulin, since the stimulatory effects of these agents were inhibited by scavengers of oxygen radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号