首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The lysis of protoplasts of Micrococcus luteus has been tested with various derivatives of three peptidolipidic antibiotics: iturin A, mycosubtilin and bacillomycin L. The lytic activity is dependent to the nature of the substituting group and to the position of the substituted aminoacid residue. The acetylation of OH groups leads to a decrease of the lytic activity of the natural antibiotics. The methylation of aspartyl residues of bacillomycin L gives a strong lytic activity while natural bacillomycin L has no lytic activity. The methylation of the tyrosyl residue enhances the lytic activities of iturin A and of bacillomycin L-dimethyl ester and reduces that of mycosubtilin.Correlations between the structures of derivatives and their lytic action on M. luteus protoplasts are discussed.  相似文献   

2.
Abstract The effects of iturin A, at fungicidal concentrations, on yeast cells were studied by scanning electron microscopy and by transmission electron microscopy. A depression, observed in each iturin A-treated cell, was the consequence of the release of electrolytes and other cytoplasmic components. Iturin A passes through the cell wall and disrupts the plasma membrane with the formation of small vesicles and the aggregation of intramembranous particles. Moreover, iturin A passes through the plasma membrane and interacts with the nuclear membrane and probably with membranes of other cytoplasmic organelles.  相似文献   

3.
R Maget-Dana  L Thimon  F Peypoux  M Ptak 《Biochimie》1992,74(12):1047-1051
Iturin A and surfactin are two lipopeptides extracted from a same strain of Bacillus subtilis. Iturin A possesses antibiotic and antifungal activities and surfactin is a strong surfactant. The presence of surfactin, at a concentration at which, alone, it is inactive, increases to a very large extent the haemolysis percent induced by iturin A. This synergistic effect seems to be in relation with interactions between iturin A and surfactin. Iturin A adsorbs to and penetrates into surfactin monolayers. Iturin A and surfactin are miscible and interact specifically in mixed monolayers.  相似文献   

4.
5.
I Harnois  R Maget-Dana  M Ptak 《Biochimie》1989,71(1):111-116
Iturin A, extracted from the culture media of Bacillus subtilis, is an antifungal lipopeptide, the peptide cycle of which includes a D-Tyr residue in position 2. The antibiotic strength of iturin A is related to a change in the permeability of the membrane cells which leads to a leakage of K+ from the intracellular medium. Methylation of the D-Tyr residue dramatically decreases the biological activity of iturin A. Using the intrinsic fluorescence of D-Tyr we have shown that both iturin A and O-methyl-tyrosine iturin A enter the lipid membranes. When dimyristoylphosphatidylcholine vesicles contain iturin A we observe a change in the order degree of the lipid phase and an increase in the transition temperature. The methylated derivative has no effect. Two model membranes have been used to study the permeability changes induced by iturin A and O-methyltyrosine iturin A. Studying ionic permeability we have found that the conductance of a planar lipid membrane increases very much less when the lipopeptide is methylated. On the other hand, the release of carboxyfluorescein trapped in lipid vesicles is less upon addition of O-methyltyrosine-iturin A. We conclude that the Tyr residue of the peptide cycle plays a role in determining the interactions of iturin A with lipid membrane.  相似文献   

6.
Controlling toxigenic Fusarium graminearum (FG) is challenging. A bacterial strain (S76-3, identified as Bacillus amyloliquefaciens) that was isolated from diseased wheat spikes in the field displayed strong antifungal activity against FG. Reverse-phase high performance liquid chromatography and electrospray ionization mass spectrometry analyses revealed that S76-3 produced three classes of cyclic lipopeptides including iturin, plipastatin and surfactin. Each class consisted of several different molecules. The iturin and plipastatin fractions strongly inhibited FG; the surfactin fractions did not. The most abundant compound that had antagonistic activity from the iturin fraction was iturin A (m/z 1043.35); the most abundant active compound from the plipastatin fraction was plipastatin A (m/z 1463.90). These compounds were analyzed with collision-induced dissociation mass spectrometry. The two purified compounds displayed strong fungicidal activity, completely killing conidial spores at the minimal inhibitory concentration range of 50 µg/ml (iturin A) and 100 µg/ml (plipastatin A). Optical and fluorescence microscopy analyses revealed severe morphological changes in conidia and substantial distortions in FG hyphae treated with iturin A or plipastatin A. Iturin A caused leakage and/or inactivation of FG cellular contents and plipastatin A caused vacuolation. Time-lapse imaging of dynamic antagonistic processes illustrated that iturin A caused distortion and conglobation along hyphae and inhibited branch formation and growth, while plipastatin A caused conglobation in young hyphae and branch tips. Transmission electron microscopy analyses demonstrated that the cell walls of conidia and hyphae of iturin A and plipastatin A treated FG had large gaps and that their plasma membranes were severely damaged and separated from cell walls.  相似文献   

7.
Iturin A, a lipopeptide isolated from Bacillus subtilis, possesses a strong antifungal activity, and has been devoted to a great deal of attention. Since iturin is an amphiphilic compound with a great propensity to self-associate in solution as well as inside the membrane, the question arises to whether its aggregational behavior is dependent on the concentration of the lipopeptide. In order to test this, the ability of iturin suspensions to encapsulate water-soluble molecules has been examined. Iturin was dispersed at different concentrations above its critical micellar concentration, in a buffer containing the water-soluble dye 5,6-carboxyfluorescein. For iturin A micelles, a Stokes radius of 1.3 nm and an aggregational number of 7 was obtained. The results shown in this work clearly demonstrate that iturin dispersions in water, at concentrations of 0.7, 1.4 and 3 mM, i.e. far above the critical micellar concentration (40 microM), are capable of encapsulating carboxyfluorescein, probably by adopting a type of aggregate different from the micelle. Negative-staining electron microscopy shows the presence of vesicles with an average size of 150 nm. By using (14)C-iturin, it is shown that, at 3 mM concentration, 40 % of the iturin molecules adopt this vesicular state. It is proposed that iturin molecules form a fully interdigitated bilayer, where each hydrocarbon tail span the entire hydrocarbon width of the bilayer, resulting in multilamellar vesicles capable of encapsulating an aqueous compartment. The possible implications of these results to the membrane destabilizing effect of iturin A, are discussed according to the dynamic cone-shape of the iturin molecule.  相似文献   

8.
Iturin A is a lipopeptide extracted from the culture media of Bacillus subtilis which shows a strong antifungal action. The interaction of iturin A with multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) induced structures which did not sediment during centrifugation. Electron microscopy after negative staining showed that, at 30 mol%, iturin A/DMPC vesicles were visible but smaller than those formed by pure DMPC. Thermograms of DMPC/iturinA obtained after differential scanning calorimetry, at low concentrations of iturin A, were interpreted as indicating the presence of two laterally separated phases, one formed by pure phospholipid and the other by lipopeptide-phospholipid complexes, these two separated phases being already detected even at low concentrations such as 2 mol%. Fluorescence quenching experiments showed that the D-Tyr residue of the lipopeptide was fully accessible to the aqueous medium, indicating that the polar part of iturin A is located outside of the membrane hydrophobic palisade. It was concluded that the membrane barrier properties are likely to be damaged in the area where the lipid complexes are accumulated, due to structural fluctuations, and this may be one of the bases of its biological activity. Iturin-A was also able to greatly destabilize dielaidoylphosphatidylethanolamine (DEPE) membranes in the fluid form, producing a new structure which had a poor correlation in X-ray diffraction, and in 31P NMR spectroscopy gave rise to a spectrum containing a double isotropic signal. Iturin A was shown to induce DEPE to adopt phases other than H(II) inverted hexagonal, underlining that this lipopeptide is capable of modifying the curvature of the membrane, which may also be important in explaining the tendency of iturin A to create small vesicles and which may be another of the bases of its biological activity.  相似文献   

9.
I. The Plasmalemma. 1. On the plasmalemma of amebæ CaCl2 antagonizes the toxic action of LiCl better than it does NaCl, and still better than it does KCl. MgCl2 antagonizes the toxic action of NaCl better than it does LiCl and still better than it does KCl. 2. CaCl2 antagonizes the toxic action of LiCl and of KCl better than does MgCl2: MgCl2 antagonizes NaCl better than does CaCl2. II. The Internal Protoplasm. 3. The antagonizing efficiency of CaCl2 and of MgCl2 are highest against the toxic action of KCl on the internal protoplasm, less against that of NaCl, and least against that of LiCl. 4. CaCl2 antagonizes the toxic action of LiCl better than does MgCl2: MgCl2 antagonizes the toxic action of NaCl and of KCl better than does CaCl2. 5. LiCl antagonizes the toxic action of MgCl2 on the internal protoplasm more effectively than do NaCl or KCl, which have an equal antagonizing effect on the MgCl2 action. III. The Nature of Antagonism. 6. When the concentration of an antagonizing salt is increased to a toxic value, it acts synergistically with a toxic salt. 7. No case was found in which a potentially antagonistic salt abolishes the toxic action of a salt unless it is present at the site (surface or interior) of toxic action. 8. Antagonistic actions of the salts used in these experiments are of differing effectiveness on the internal protoplasm and on the surface membrane.  相似文献   

10.
Isolation, Composition, and Structure of Membrane of Listeria monocytogenes   总被引:6,自引:6,他引:0  
The plasma membrane of Listeria monocytogenes strain 42 was prepared by osmotic lysis of protoplasts with tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8.2, containing MgCl2 and glucose, followed by washing with NaCl and MgCl2 in Tris buffer. Electron microscopy showed that the preparation was not contaminated with cytoplasmic material. The membrane preparation was composed of 55 to 60% protein, 1.5% ribonucleic acid, 0.1% deoxyribonucleic acid, 1.3 to 2.3% carbohydrate, 0.17 to 0.38% amino sugar, 0.2 to 0.4% rhamnose, 3.5 to 4.0% phosphorus, 10.5 to 12.0% nitrogen, and 30 to 35% lipid. Amino acid composition of the washed membrane showed some variation from that of the whole cells. Sulfur-containing amino acids were not present in the membrane hydrolysate. The membrane carbohydrate contained glucose, galactose, ribose, and arabinose. The membrane lipid was 80 to 85% phospholipid and 15 to 20% neutral lipid. The lipid contained 2.3 to 3.0% phosphorus, 2.5 to 3.0% carbohydrate, and a very small amount of nitrogen (0.2 to 0.3%). The phospholipid was of the phosphatidyl glycerol type. Electron micrographs of the washed membrane showed three layers. The outer and inner layers varied in thickness from 25 to 37 A and the middle layer from 20 to 25 A. The total thickness varied between 85 and 100 A. These preparations contained many vesicles which stained heavily with lead citrate. Some vesicles were also attached to the protoplast ghosts in the form of extrusions or intrusions, or both. Membrane preparations obtained by lysis of protoplasts in the absence of MgCl2 were fragmented and contained less lipid (20 to 22%) and ribonucleic acid (0.3 to 0.5%) than preparations prepared with MgCl2.  相似文献   

11.
The bacterial lipopeptide iturin A is able to cause hemolysis of human erythrocytes in a dose-dependent manner. Hemolysis takes place at iturin concentrations below its critical micellar concentration. Relative kinetics determinations clearly show that K+ leakage occurs prior to hemoglobin release. Furthermore, hemolysis can be prevented by addition to the outer solution of osmotic protectants of appropriate size. Altogether these results indicate that iturin A-induced hemolysis follows a colloid-osmotic mechanism, with the formation of a membrane pore of average diameter 32 Å. Iturin A is capable of inducing leakage of an aqueous fluorescent probe trapped in human erythrocyte ghosts, but not in large unilamellar liposomes made of various lipid compositions. The different permeabilizing effects of iturin A on model and biological membranes are discussed on the light of the presented results.  相似文献   

12.
Summary We have identified cytoplasmic and membrane-associated proteinases from Micrococcus lysodeikticus (M. luteus) by the use of 125I-labeled casein and insulin as substrates. The membrane-associated activities were released by shock washing. Proteolytic activities showed pH optima at slightly alkaline values and we have concentrated on the activities at pH 8.0. The total units of both proteolytic activities were higher in the cytoplasmic than in any other fractions but the situation was different when the results were expressed in terms of specific activity. The activities against casein and insulin were differentiated by the action of inhibitors, divalent metal ions, Arrhenius plots and dependence on ionic strength. On these grounds, it is proposed that the membrane-associated enzyme acting on insulin is a single thiol proteinase while the proteolysis of casein reflects the action of, at least, two enzymes (thiol proteinase and serine proteinase). The distinction between the casein and insulin degrading activities was confirmed by crossed-inhibition experiments and by their behaviour on gel chromatography and concentration-dependent experiments.The aggregating properties have hampered the purification of the enzymes. The present results raise doubts about the significance of preventing membrane damage and degradation of membrane proteins by the addition of indiscriminated proteinase inhibitors during membrane isolation and manipulation.  相似文献   

13.
Iturin A, a lipopeptide antibiotic produced by Bacillus subtilis RB14-CS, suppresses the growth of various plant pathogens. Here, enhancement of iturin A production in solid-state fermentation (SSF) on okara, a soybean curd residue produced during tofu manufacturing, was accomplished using statistical experimental design. Primary experiments showed that the concentrations of carbon and nitrogen sources were the main factors capable of enhancing iturin A production, whereas initial pH, initial water content, temperature, relative humidity, and volume of inoculum were only minor factors. Glucose and soybean meal were the most effective among tested carbon and nitrogen sources, respectively. Based on these preliminary findings, response surface methodology was applied to predict the optimum amounts of the carbon and nitrogen sources in the medium. The maximum iturin A concentration was 5,591 μg/g initial wet okara under optimized condition. Subsequent experiments confirmed that iturin A production was significantly improved under the predicted optimal medium conditions. The SSF product generated under the optimized conditions exhibited significantly higher suppressive effect on the damping-off of tomato caused by Rhizoctonia solani K-1 compared with the product generated under the non-optimized conditions.  相似文献   

14.
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein–ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2–) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.  相似文献   

15.
Iturin A, bacillomycin L and bacillomycin L dimethyl ester have a strong lytic activity upon human erythrocytes while iturin C is totally inactive. The hemolytic action of the antibiotics is inhibited by free cholesterol as well as by cholesterol included in mixed liposomes of phosphatidylcholine-cholesterol and to a lesser extent by phosphatidylcholine liposomes. This inhibition is the result of an interaction between the antibiotic and added lipids which diminishes the concentration of free antibiotic available to lyse erythrocytes. The inhibitory effect of liposomes on hemolysis demonstrates the affinity of the antibiotic for artificial membranes, especially those containing cholesterol.  相似文献   

16.
Binding of Dissolved Strontium by Micrococcus luteus   总被引:1,自引:1,他引:0       下载免费PDF全文
Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity.  相似文献   

17.
Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin.  相似文献   

18.
The effect of external divalent cation salt solutions upon the association of an action potential and cessation of cytoplasmic streaming in Nitella was studied. Nitella cells remained excitable when immersed in solutions of CaCl2, MgCl2, BaCl2, and SrCl2. Cessation of streaming coincident with excitation occurred in solutions of CaCl2 or SrCl2 but not in solutions of MgCl2 or BaCl2. In cells exposed to solutions containing mixtures of MgCl2 and CaCl2, or MgCl2 and SrCl2, it was the [Ca]/[Mg] or [Sr]/[Mg] which determined the effect of an action potential upon the rate of streaming, rather than the absolute concentrations Ca++ or Sr++. The implications of these data are discussed with respect to the structure involved in the generation of cytoplasmic streaming and the relation of streaming to other types of biological motion.  相似文献   

19.
The bacterial lipopeptide iturin A is able to cause hemolysis of human erythrocytes in a dose-dependent manner. Hemolysis takes place at iturin concentrations below its critical micellar concentration. Relative kinetics determinations clearly show that K(+) leakage occurs prior to hemoglobin release. Furthermore, hemolysis can be prevented by addition to the outer solution of osmotic protectants of appropriate size. Altogether these results indicate that iturin A-induced hemolysis follows a colloid-osmotic mechanism, with the formation of a membrane pore of average diameter 32 A. Iturin A is capable of inducing leakage of an aqueous fluorescent probe trapped in human erythrocyte ghosts, but not in large unilamellar liposomes made of various lipid compositions. The different permeabilizing effects of iturin A on model and biological membranes are discussed on the light of the presented results.  相似文献   

20.
The oligo-acyl-lysyl, C12(ω7)K-β12, is comprised of only three Lys residues. Despite its small size, it exhibits potent bacteriostatic activity against Gram-positive bacteria, but it is ∼10-fold less potent against Gram-negative bacteria. We followed the interactions of C12(ω7)K-β12 from its initial contact with the bacterial surface across the cell wall down to the cytoplasmic membrane. Binding to anionic lipids, as well as to negatively charged LPS and LTA, occurs with very high affinity. The C12(ω7)K-β12 does not cross the outer membrane of Gram-negative bacteria; rather, it achieves its action by depositing on the LPS layer, promoting surface adhesion and blocking passage of solutes. In Gram-positive bacteria, the thick peptidoglycan layer containing LTA allows passage of C12(ω7)K-β12 and promotes its accumulation in the small periplasm. From that location it is then driven to the membrane by strong electrostatic interactions. Despite its high potency against Gram-positive bacteria, this agent is not capable of efficiently breaking down the permeability barrier of the cytoplasmic membrane or of reaching an intracellular target, as suggested by the fact that it does not interact with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号