首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants.  相似文献   

2.
DNA polymerase delta (Pol delta) isolated from Schizosaccharomyces pombe (sp) consists of at least four subunits, Pol3, Cdc1, Cdc27, and Cdm1. We have reconstituted the four-subunit complex by simultaneously expressing these polypeptides in baculovirus-infected insect cells. The properties of the purified cloned spPol delta were identical to the native spPol delta isolated from S. pombe cells. In addition, we also isolated a three-subunit complex containing Pol3, Cdc1, and Cdm1. Both three- and four-subunit complexes required replication factor C and proliferating cell nuclear antigen for DNA replication. However, in the presence of low levels of polymerase complexes, the three-subunit complex was less efficient than the four-subunit complex in supporting DNA replication. The inefficient synthesis of DNA by the three-subunit complex can be remedied by the addition of Cdc27, the subunit missing in the three-subunit complex. Gel filtration analysis demonstrated that the three-subunit complex is a monomer of the heterotrimer (Pol3, Cdc1, and Cdm1) and that the four-subunit complex is a dimer of the heterotetramer (Pol3, Cdc1, Cdc27, and Cdm1), similar to the structure of native spPol delta. We have further shown that Cdc1 and Cdc27 interact to form a heterodimeric complex. Gel filtration studies indicate that the structure of this complex is dimeric. These observations suggest that the Cdc27 subunit may play an important role contributing to the dimerization of Pol delta.  相似文献   

3.
The fission-yeast gene cdc28+ was originally identified in a screen for temperature-sensitive mutants that exhibit a cell-division cycle arrest and was found to be required for mitosis. We undertook a study of this gene to understand more fully the general requirements for entry into mitosis. Cells carrying the conditional lethal cdc28-P8 mutation divide once and arrest in G2 after being shifted to the restrictive temperature. We cloned the cdc28+ gene by complementation of the temperature-sensitive growth arrest in cdc28-P8. DNA sequence analysis indicated that cdc28+ encodes a member of the DEAH-box family of putative RNA-dependent ATPases or helicases. The Cdc28 protein is most similar to the Prp2, Prp16, and Prp22 proteins from budding yeast, which are required for the splicing of mRNA precursors. Consistent with this similarity, the cdc28-P8 mutant accumulates unspliced precursors at the restrictive temperature. Independently, we isolated a temperature-sensitive pre-mRNA splicing mutant prp8-1 that exhibits a cell-cycle phenotype identical to that of cdc28-P8. We have shown that cdc28 and prp8 are allelic. These results suggest a connection between pre-mRNA splicing and progression through the cell cycle.  相似文献   

4.
During the cell cycle of the yeast Saccharomyces cerevisiae, the actin cytoskeleton and the growth of cell surface are polarized, mediating bud emergence, bud growth, and cytokinesis. We identified CDC50 as a multicopy suppressor of the myo3 myo5-360 temperature-sensitive mutant, which is defective in organization of cortical actin patches. The cdc50 null mutant showed cold-sensitive cell cycle arrest with a small bud as reported previously. Cortical actin patches and Myo5p, which are normally localized to polarization sites, were depolarized in the cdc50 mutant. Furthermore, actin cables disappeared, and Bni1p and Gic1p, effectors of the Cdc42p small GTPase, were mislocalized in the cdc50 mutant. As predicted by its amino acid sequence, Cdc50p appears to be a transmembrane protein because it was solubilized from the membranes by detergent treatment. Cdc50p colocalized with Vps21p in endosomal compartments and was also localized to the class E compartment in the vps27 mutant. The cdc50 mutant showed defects in a late stage of endocytosis but not in the internalization step. It showed, however, only modest defects in vacuolar protein sorting. Our results indicate that Cdc50p is a novel endosomal protein that regulates polarized cell growth.  相似文献   

5.
M. A. McAlear  K. M. Tuffo    C. Holm 《Genetics》1996,142(1):65-78
We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.  相似文献   

6.
7.
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for cell cycle initiation. In an attempt to identify genes encoding proteins that interact with the Cdc28 protein kinase, high-copy plasmid suppressors of a temperature-sensitive cdc28 mutation were isolated. One such suppressor, CKS1, was found to encode an 18-kilodalton protein that shared a high degree of homology with the suc1+ protein (p13) of Schizosaccharomyces pombe (67% amino acid sequence identity). Disruption of the chromosomal CKS1 gene conferred a G1 arrest phenotype similar to that of cdc28 mutants. The presence of the 18-kilodalton Cks1 protein in yeast lysates was demonstrated by using Cks-1 specific antiserum. Furthermore, the Cks1 protein was shown to be physically associated with active forms of the Cdc28 protein kinase. These data suggest that Cks1 is an essential component of the Cdc28 protein kinase complex.  相似文献   

8.
To investigate the means by which a cell regulates the progression of the mitotic cell cycle, we characterized cdc44, a mutation that causes Saccharomyces cerevisiae cells to arrest before mitosis. CDC44 encodes a 96-kDa basic protein with significant homology to a human protein that binds DNA (PO-GA) and to three subunits of human replication factor C (also called activator 1). The hypothesis that Cdc44p is involved in DNA metabolism is supported by the observations that (i) levels of mitotic recombination suggest elevated rates of DNA damage in cdc44 mutants and (ii) the cell cycle arrest observed in cdc44 mutants is alleviated by the DNA damage checkpoint mutations rad9, mec1, and mec2. The predicted amino acid sequence of Cdc44p contains GTPase consensus sites, and mutations in these regions cause a conditional cell cycle arrest. Taken together, these observations suggest that the essential CDC44 gene may encode the large subunit of yeast replication factor C.  相似文献   

9.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

10.
Schizosaccharomyces pombe DNA polymerase (pol) delta contains four subunits, pol 3, Cdc1, Cdc27, and Cdm1. In this report, we examined the role of Cdc27 on the structure and activity of pol delta. We show that the four-subunit complex is monomeric in structure, in contrast to the previous report that it was a dimer (Zuo, S., Bermudez, V., Zhang, G., Kelman, Z., and Hurwitz, J. (2000) J. Biol. Chem. 275, 5153-5162). This discrepancy between the earlier and recent observations was traced to the marked asymmetric shape of Cdc27. Cdc27 contains two critical domains that govern its role in activating pol delta. The N-terminal region (amino acids (aa) 1-160) binds to Cdc1 and its extreme C-terminal end (aa 362-369) interacts with proliferating cell nuclear antigen (PCNA). Mutants of S. pombe pol delta, containing truncated Cdc27 derivatives deficient in binding to PCNA, supported DNA replication less processively than the wild-type complex. Fusion of a minimal PCNA-binding motif (aa 352-372) to C-terminally truncated Cdc27 derivatives restored processive DNA synthesis in vitro. In vivo, the introduction of these fused Cdc27 derivatives into cdc27Delta cells conferred viability. These data support the model in which Cdc27 plays an essential role in DNA replication by recruiting PCNA to the pol delta holoenzyme.  相似文献   

11.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

12.
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. The HTLV-1 transactivator, Tax, is implicated as the viral oncoprotein. Na?ve cells expressing Tax for the first time develop severe cell cycle abnormalities that include increased DNA synthesis, mitotic arrest, appearance of convoluted nuclei with decondensed DNA, and formation of multinucleated cells. Here we report that Tax causes a drastic reduction in Pds1p/securin and Clb2p/cyclin B levels in yeast, rodent, and human cells and a loss of cell viability. With a temperature-sensitive mutant of the CDC23 subunit of the anaphase-promoting complex (APC), cdc23(ts); a temperature-sensitive mutant of cdc20; and a cdh1-null mutant, we show that the diminution of Pds1p and Clb2p brought on by Tax is mediated via the Cdc20p-associated anaphase-promoting complex, APC(Cdc20p). This loss of Pds1p/securin and Clb2p/cyclin B1 occurred before cellular entry into mitosis, caused a G(2)/M cell cycle block, and was accompanied by severe chromosome aneuploidy in both Saccharomyces cerevisiae cells and human diploid fibroblasts. Our results support the notion that Tax aberrantly targets and activates APC(Cdc20p), leading to unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1, a delay or failure in mitotic entry and progression, and faulty chromosome transmission. The chromosomal instability resulting from a Tax-induced deficiency in securin and cyclin B1 provides an explanation for the highly aneuploid nature of adult T-cell leukemia cells.  相似文献   

13.
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.  相似文献   

14.
《The Journal of cell biology》1994,125(6):1289-1301
The fission yeast Schizosaccharomyces pombe divides by medial fission and, like many higher eukaryotic cells, requires the function of an F- actin contractile ring for cytokinesis. In S. pombe, a class of cdc- mutants defective for cytokinesis, but not for DNA replication, mitosis, or septum synthesis, have been identified. In this paper, we present the characterization of one of these mutants, cdc3-124. Temperature shift experiments reveal that mutants in cdc3 are incapable of forming an F-actin contractile ring. We have molecularly cloned cdc3 and used the cdc3+ genomic DNA to create a strain carrying a cdc3 null mutation by homologous recombination in vivo. Cells bearing a cdc3-null allele are inviable. They arrest the cell cycle at cytokinesis without forming a contractile ring. DNA sequence analysis of the cdc3+ gene reveals that it encodes profilin, an actin-monomer-binding protein. In light of recent studies with profilins, we propose that Cdc3-profilin plays an essential role in cytokinesis by catalyzing the formation of the F-actin contractile ring. Consistent with this proposal are our observations that Cdc3-profilin localizes to the medial region of the cell where the F-actin contractile ring forms, and that it is essential for F-actin ring formation. Cells overproducing Cdc3-profilin become elongated, dumbbell shaped, and arrest at cytokinesis without any detectable F-actin staining. This effect of Cdc3-profilin overproduction is relieved by introduction of a multicopy plasmid carrying the actin encoding gene, act1+. We attribute these effects to potential sequestration of actin monomers by profilin, when present in excess.  相似文献   

15.
A semipermissive growth condition was defined for a Schizosaccharomyces pombe strain carrying a thermosensitive allele of DNA polymerase delta (pol delta ts03). Under this condition, DNA polymerase delta is semidisabled and causes a delay in S-phase progression. Using a genetic strategy, we have isolated a panel of mutants that enter premature mitosis when DNA replication is incomplete but which are not defective for arrest in G2/M following DNA damage. We characterized the aya14 mutant, which enters premature mitosis when S phase is arrested by genetic or chemical means. However, this mutant is sensitive to neither UV nor gamma irradiation. Two genomic clones, rad26+ and cds1+, were found to suppress the hydroxyurea sensitivity of the aya14 mutant. Genetic analysis indicates that aya14 is a novel allele of the cell cycle checkpoint gene rad26+, which we have named rad26.a14. cds1+ is a suppressor which suppresses the S-phase feedback control defect of rad26.a14 when S phase is inhibited by either hydroxyurea or cdc22, but it does not suppress the defect when S phase is arrested by a mutant DNA polymerase. Analyses of rad26.a14 in a variety of cdc mutant backgrounds indicate that strains containing rad26.a14 bypass S-phase arrest but not G1 or late S/G2 arrest. A model of how Rad26 monitors S-phase progression to maintain the dependency of cell cycle events and coordinates with other rad/hus checkpoint gene products in responding to radiation damage is proposed.  相似文献   

16.
Yeast Cdc7 protein kinase and Dbf4 protein are both required for the initiation of DNA replication at the G1/S phase boundary of the mitotic cell cycle. Cdc7 kinase function is stage-specific in the cell cycle, but total Cdc7 protein levels remained unchanged. Therefore, regulation of Cdc7 function appears to be the result of posttranslational modification. In this study, we have attempted to elucidate the mechanism responsible for achieving this specific execution point of Cdc7. Cdc7 kinase activity was shown to be maximal at the G1/S boundary by using either cultures synchronized with alpha factor or Cdc- mutants or with inhibitors of DNA synthesis or mitosis. Therefore, Cdc7 kinase is regulated by a posttranslational mechanism that ensures maximal Cdc7 activity at the G1/S boundary, which is consistent with Cdc7 function in the cell cycle. This cell cycle-dependent regulation could be the result of association with the Dbf4 protein. In this study, the Dbf4 protein was shown to be required for Cdc7 kinase activity in that Cdc7 kinase activity is thermolabile in vitro when extracts prepared from a temperature-sensitive dbf4 mutant grown under permissive conditions are used. In vitro reconstitution assays, in addition to employment of the two-hybrid system for protein-protein interactions, have demonstrated that the Cdc7 and Dbf4 proteins interact both in vitro and in vivo. A suppressor mutation, bob1-1, which can bypass deletion mutations in both cdc7 and dbf4 was isolated. However, the bob1-1 mutation cannot bypass all events in G1 phase because it fails to suppress temperature-sensitive cdc4 or cdc28 mutations. This indicates that the Cdc7 and Dbf4 proteins act at a common point in the cell cycle. Therefore, because of the common point of function for the two proteins and the fact that the Dbf4 protein is essential for Cdc7 function, we propose that Dbf4 may represent a cyclin-like molecule specific for the activation of Cdc7 kinase.  相似文献   

17.
Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion.  相似文献   

18.
Eukaryotic initiation factor 2 (eIF2) is a central regulator of translational initiation in times of growth and times of stress. Here we discovered three new conserved regulators of eIF2 in Saccharomyces cerevisiae. cdc123, homolog of mammalian D123, is a new cell division cycle mutant with a G2 delay at permissive temperature and a terminal, mating-proficient G1 arrest point. Cdc123 protein is regulated by nutrient availability. CHF1 and CHF2, homologs of mammalian checkpoint forkhead associated with RING genes, are required for G2 delay and G1 arrest of cdc123-4 and promote G1 delay when over-expressed. Cell cycle delaying activity and the natural instability of Chf1 and Chf2 depend on the integrity of both domains and association with Cdc123. Genetic analysis maps the Chf1 forkhead associated domain-binding site to the conserved Thr-274 of Cdc123, suggesting that mammalian D123 is a key target of Chfr. Gcd11, the gamma subunit of eIF2, is an additional Cdc123-interacting protein that is an essential target of the Cdc123 cell cycle promoting and Chf cell cycle arresting activity whose abundance is regulated by Cdc123, Chf1, and Chf2. Loss of cdc123 activity promotes Chf1 and Chf2 accumulation and Gcd11 depletion, accounting for the essentiality of Cdc123. The data establish the Cdc123-Chf-Gcd11 axis as an essential pathway for nutritional control of START that runs parallel to the Tor-Gcn2-Sui2 system of translational control.  相似文献   

19.
The S. cerevisiae CDC40 gene was originally identified as a cell-division-specific gene that is essential only at elevated temperatures. Cells carrying mutations in this gene arrest with a large bud and a single nucleus with duplicated DNA content. Cdc40p is also required for spindle establishment or maintenance. Sequence analysis reveals that CDC40 is identical to PRP17, a gene involved in pre-mRNA splicing. In this paper, we show that Cdc40p is required at all temperatures for efficient entry into S-phase and that cell cycle arrest associated with cdc40 mutations is independent of all the known checkpoint mechanisms. Using immunofluorescence, we show that Cdc40p is localized to the nuclear membrane, weakly associated with the nuclear pore. Our results point to a link between cell cycle progression, pre-mRNA splicing, and mRNA export. Received: 9 April 1998 / Accepted: 10 August 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号