首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
罗汉果SRAP反应体系的建立与优化   总被引:1,自引:0,他引:1  
建立适合罗汉果的SRAP-PCR扩增体系,为罗汉果的遗传图谱构建及基因定位奠定基础。实验对罗汉果SRAP-PCR反应体系的影响因素(引物,dNTP,Taq酶,Mg~(2+),模板DNA)在多个水平上进行优化试验,筛选出各反应因素的最佳水平,建立了罗汉果SRAP-PCR反应的最佳体系(10μL):引物0.6μmol/L、dNTP0.25 mmol/L、Taq DNA聚合酶0.5U、Mg~(2+)2.0 mmol/L和模板DNA 30 ng。该体系的建立能很好的满足罗汉果基因组DNA的扩增要求,SRAP标记应用于罗汉果遗传研究是可行的。  相似文献   

2.
油茶SRAP-PCR反应体系的建立和优化   总被引:1,自引:0,他引:1  
为了建立油茶SRAP-PCR扩增体系,本研究使用单因素试验设计,对反应体系的Taq酶、Mg2+、模板DNA、dNTP和引物浓度5个主要影响因子各设10个不同的水平梯度,筛选出适宜的因子范围;在此基础上,进一步采用L16(45)正交设计,对影响油茶SRAP-PCR反应体系的5个因素在4水平上进行优化,建立了油茶SRAP-PCR最佳反应体系,即25μL体积中包含模板DNA30ng,Mg2+2.8mmol/L,引物0.44μmol/L,dNTP0.2mmol/L和Taq酶1.0U。该SRAP-PCR体系的建立为油茶种质资源遗传多样性分析、品种鉴定及指纹图谱构建等研究提供了一个标准化的程序。  相似文献   

3.
白木香SRAP-PCR反应体系的建立   总被引:6,自引:0,他引:6  
本实验对白木香SRAP-PCR反应体系的影响因素(模板DNA,Taq 酶,Mg2+,dNTP,引物)在4个水平上进行优化试验,筛选出各反应因素的最佳水平,建立白木香SRAP-PCR反应的最佳体系(20 μL):模板DNA 50 ng、引物0.30 μmol/L、Mg2+ 1.5 mmol/L、dNTP 0.4 mmol/L和Taq DNA聚合酶1.0 U.适用于白木香的SRAP-PCR反应体系迄今未见报道,这一优化系统的建立为今后利用SRAP标记技术对白木香进行基础研究提供了一个标准化的程序.  相似文献   

4.
丹参SRAP反应体系的建立与优化   总被引:3,自引:0,他引:3  
相关序列扩增多态性(SRAP)是一种新发展起来的分子标记技术.实验以丹参总DNA为模板,对SRAP-PCR反应体系的重要参数设置梯度实验,筛选最佳的SRAP-PCR反应条件.经过大量重复性实验,建立了一套适用于丹参稳定可靠、重复性好、带型清晰的SRAP-PCR反应体系:25μL的反应体系中,模板DNA量40ng、2.5mmol/L Mg2 浓度、0.8μmol/L的上下游引物、200μmol/L的dNTPs以及Taq酶1U.研究结果表明,该体系可应用于丹参植物种质的分类鉴别,并为其地道性及功能基因的研究奠定基础.  相似文献   

5.
运用L16(45)正交设计对影响缢蛏SRAP-PCR反应的5个因素:Taq酶浓度、Mg2+浓度、模板DNA浓度、dNTPs浓度和引物浓度在4个水平上进行了优化试验,PCR结果采用SPSS v16.0软件分析.结果表明,各因素对SRAP-PCR反应的影响依次为:引物>Taq酶>模板DNA>Mg2+;缢蛏SRAP反应最佳体系为:在20μL PCR反应体系中,引物0.3 μmol/L、Taq 酶0.5 U、模板DNA 50 ng、dNTPs 0.2 mmol/L及Mg2+2 mmol/L.用不同缢蛏的基因组DNA两次SRAP-PCR扩增,8对引物均能扩增出清晰且重复性好的谱带.因而建立的缢蛏反应体系稳定可靠.  相似文献   

6.
以中国古代莲(Nelumbo nucifera)和美洲黄莲(N.lutea)为材料,利用单因素分析法对影响莲SRAP-PCR扩增效果的模板、Mg2+、dNTP、Taq DNA聚合酶、引物浓度进行了探索和研究.获得了能稳定扩增莲基因组的SRAP-PCR最佳10 μL反应体系:模板DNA浓度为50 ng、1μL10×Buffer、MgCl2浓度为2 mmol/L、dNTPs浓度为0.2 mmol/L、Taq DNA聚合酶浓度为0.75 U、正反向引物浓度均为0.8μmol/L.为检测该优化体系的稳定性,进一步选取16对引物组合对88份花莲核心种质进行PCR扩增,获得了183条清晰的谱带,其中165条具有多态性,比率为90%,说明建立的莲SRAP反应体系是稳定可靠的.莲SRAP-PCR反应体系的优化和建立,为利用SRAP标记技术深入开展莲的遗传多样性评价、遗传连锁图构建和分子辅助育种等研究提供成熟的技术体系支撑.  相似文献   

7.
青檀SRAP-PCR体系优化设计方案   总被引:3,自引:0,他引:3  
以青檀(Pteroceltis tatarinowii Maxim.)叶片为材料,采用正交设计和均匀设计两种方法对SRAP-PCR反应体系进行优化,并对这两种设计方案优化出的最佳反应体系进行比较,结果表明:两种设计均可用于青檀SRAP-PCR体系的优化,但与正交设计相比,均匀设计在多因素多水平条件下,得到的条带更清晰、稳定性更好。通过实验比较筛选出的青檀SRAP-PCR最佳反应体系为:2.5μL 10×PCR buffer,20 ng模板DNA,Mg2+2.5 mmol/L,dNTP150μmol/L,引物0.2μmol/L,Taq DNA聚合酶1.0 U,总体积25μL。  相似文献   

8.
落羽杉属树木基因组总DNA的提取及SRAP反应体系的优化   总被引:3,自引:0,他引:3  
本文针对落羽杉属植物组织中多糖、多酚等次生物质含量高的特点,对其基因组DNA提取方法进行研究,比较了SDS法、CTAB法提取落羽杉属植物基因组DNA的效果,结果表明:CTAB法提取效果较佳.在此基础上,利用正交设计法,对SRAP反应体系中的各个主要影响因子Mg2+、dNTP、引物、Taq DNA聚合酶进行了优化筛选,确立了适合落羽杉属植物SRAP-PCR反应的最佳体系,即10 μL体系中含有1 μL10×PCR buffer,Mg2+ 2.0 mmol/L,dNTP 100 μmol/L,引物0.3 μmol/L,Taq DNA聚合酶0.5 U和50 ng模板DNA.利用该优化体系,通过48对SRAP引物组合对2个落羽杉属植物(落羽杉和墨杉)及4个杂交后代进行SRAP扩增,结果发现,SRAP引物及优化后的反应体系能够有效地用于落羽杉属植物种质资源鉴定及遗传多样性分析等研究.  相似文献   

9.
麻栎SRAP-PCR体系优化与遗传多样性分析   总被引:3,自引:0,他引:3  
对麻栎基因组DNA的SRAP-PCR体系中dNTP、Taq酶、Mg2+、引物、模板DNA进行正 交试验优化,结果表明最佳反应体系为dNTP浓度为0.3 mmol*L-1,Taq酶1.5U, Mg 2+浓度为2mmol*L-1,引物浓度0.2ìmol*L-1,模板DNA 40ng(20ìL反 应体系).运用优化体系,从110对SRAP引物组合中,筛选出多态性较好的8对SRAP引物,对8 个不同地区麻栎进行SRAP标记分析.共检测到45个多态性位点,多态性条带百分比为51.72% .应用NTSYS-pc软件进行聚类分析(UPGMA),建立了麻栎亲缘关系树状图,表明SRAP可有效用于麻栎种质资源鉴定与遗传多样性分析.  相似文献   

10.
亚麻SRAP反应体系的优化   总被引:1,自引:0,他引:1  
通过研究亚麻SRAP反应体系中主要因子对扩增结果的影响,建立了亚麻SRAP-PCR反应的优化体系.在20μL的反应体系中将PCR的5个主要成分分别设定8个浓度梯度,结果表明,最适宜的优化浓度分别为:1.5 mmol/L Mg2+、0.3 mmol/L dNTP、1.5 U Tap酶、30 ng/μL模板DNA 90 ng和25 ng/μL引物100 ng.用6个亚麻材料验证优化体系,检测结果显示,多态性高,反应体系的稳定性和可重复性好,为SRAP标记技术在亚麻分子生物学研究方面的应用奠定了基础.  相似文献   

11.
在利用ISSR技术分析齿裂菌属和皮下盘菌属遗传多样性的研究中,为获得条带清晰、重复性好的ISSR扩增结果,对影响ISSR-PCR的条件进行了筛选,确定了此类菌物ISSR-PCR反应的最适宜条件:在15μLPCR反应体系中,10倍Taq酶缓冲液1.5μL,DNA模板8ng/μL,MgCl22.5mmol/L,dNTP0.15mmol/L,引物浓度0.4μmol/L,Taq酶1.00U,ddH2O9.0μL。最佳退火温度因不同的引物而定,最佳循环次数为35次。  相似文献   

12.
丹参ISSR-PCR反应体系的建立与正交优化   总被引:4,自引:0,他引:4  
李嵘  王喆之 《广西植物》2008,28(5):599-603
利用正交试验设计的方法,从引物浓度、Taq DNA聚合酶浓度、Mg2+浓度、dNTP浓度4种因素3个水平,对丹参ISSR-PCR反应体系进行优化分析,并在此基础上对模板DNA浓度、PCR反应过程中的退火温度进行梯度检测。结果表明:20μL ISSR-PCR反应体系中各因素的最佳浓度为1×PCR buffer、200μmol/L dNTP、1.0μmol/L引物、1.5mmol/L Mg2+和1 U Taq DNA聚合酶,最佳模板DNA浓度为20~60ng,引物UBC 835的最佳退火温度为51.7℃。  相似文献   

13.
以曼地亚红豆杉为研究对象,采用L16(45)正交组合实验和单因素梯度实验对MgCl2、dNTP、随机引物、Taq酶、模板DNA浓度和退火温度、循环次数等影响RAPD扩增的重要因素进行优化,以期建立最优的RAPD反应体系与程序。实验结果表明,各因素最适条件为:25μLPCR反应体系中10×Buffer2.5μL,MgCl21.5mmol/L,dNTP0.2mmol/L,随机引物0.6μmol/L,Taq酶1.0U,模板DNA80ng;退火温度为37℃,循环次数为45次。  相似文献   

14.
以多倍体罗汉果DNA为材料,采用L16(4~5)正交组合试验和单因素梯度试验,研究Mg~(2+)、dNTP、引物、Taq DNA聚合酶、模板DNA浓度和退火温度、循环次数等对PCR扩增结果以及内切酶量、酶切时间对酶切反应的影响。结果表明,多倍体罗汉果RFLP最优PCR反应体系和扩增参数为:在25μL扩增反应体系中,10×Buffer 2.5μL,MgCl_2 1.5 mmol/L,dNTP 0.2 mmol/L,引物0.1μmol/L,Taq DNA聚合酶2.0 U,模板DNA 60 ng;退火温度为56℃,循环次数为35次。酶切反应体系:内切酶10×Buffer 2.0μL,内切酶5.0U,PCR产物15μL,超纯水补至20μL;酶切时间2 h。  相似文献   

15.
正交设计优化东亚砂藓DDRT-PCR反应体系   总被引:1,自引:0,他引:1  
利用正交实验设计L25(5^6)对东亚砂藓(Racomitrium japonicum)DDRT—PCR反应体系的6因素(Mg^2+、dNTP、锚定引物、随机引物、模板DNA、Taq酶)在5个水平上进行优化实验。结果筛选出各反应因素的最佳体系(20μL)为:Mg^2+2.25mmol/L、dNTP0.4mmol/L、锚定引物1.0μmol/L、随机引物0.7μmol/L、模板DNA1.6μL、Taq酶2.5U。对东亚砂藓DDRT—PCR最佳反应体系进行梯度PCR引物退火温度筛选,得到的最佳退火温度为45.4℃。该优化体系的建立,为进一步进行东亚砂藓抗旱基因的筛选与克隆等一系列分子研究提供了重要参考依据。  相似文献   

16.
朝鲜碱茅ISSR-PCR反应体系的建立与优化   总被引:1,自引:0,他引:1  
为进一步开展朝鲜碱茅种质资源遗传多样性的研究,以野生朝鲜碱茅(Puccinellia chinampoensis)为材料,通过单因子试验对ISSR-PCR反应进行优化。确立最佳的PCR反应体系:在20μL反应体系中,含有模板DNA 40 ng,dNTPs 0.2 mmol/L,引物0.8μmol/L,TaqDNA聚合酶1 U,MgCl22.5 mmol/L和10×PCR Buffer(Mg2+free)2μL。此外,还筛选到10条扩增稳定、条带丰富的候选引物,并确定了各自的最佳退火温度。  相似文献   

17.
怀地黄ISSR扩增条件优化的研究   总被引:25,自引:2,他引:25  
用CTAB法提取怀地黄嫩叶DNA,进行简单重复间序列标记(ISSR)分析.通过单因子实验分别研究了退火温度、Taq酶单位、Mg2+浓度、dNTP浓度、引物浓度和模板DNA浓度对ISSR-PCR反应的影响,找出各自的合适条件,而且每一个合适条件确定以后都被作为后续研究的一个条件.通过各个因子的组合研究建立了适宜于怀地黄ISSR分析的扩增体系25 μL PCR反应体积,1×Taq DNA酶缓冲液(10 mmol/L Tris-HCl,50 mmol/L KCl,0.1% Trion X-100,pH9.0 ),2.5 mmol/L MgCl2,1.5~1.0 U Taq酶,60 ng模板DNA,0.4 μmmol/L引物,各0.4 mmol/L的dATP、dGTP、dCTP和dTTP.合适的退火温度为53~55℃.为用ISSR技术分析鉴定怀地黄种质资源奠定了良好的基础.  相似文献   

18.
目的:为了对银杏进行分子鉴定和遗传关系的分析,建立银杏ISSR-PCR的最佳扩增反应体系。方法:采用正交设计和单因素梯度实验,对影响ISSR-PCR反应体系的5个主要因素(Mg2+、dNTP、引物、模板DNA及Taq DNA聚合酶)进行筛选及优化。结果:银杏25μL ISSR最佳扩增反应体系包含10×Taq反应缓冲液、2.5 mmol/L MgCl2、0.45 mmol/L dNTP、1.2μmol/L引物(UBC861)、10 ng模板DNA及0.9 U Taq DNA聚合酶,使用此ISSR扩增反应体系,获得了10株不同性别银杏DNA的清晰条带,验证了该体系的稳定性。结论:优化的反应体系为采用ISSR分子标记技术对银杏进行遗传多样性分析、遗传育种和转基因等研究奠定了一定的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号