首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell wall is responsible for cell integrity and the maintenance of cell shape in bacteria. The Gram-positive bacterial cell wall consists of a thick peptidoglycan layer located on the outside of the cytoplasmic membrane. Bacterial cell membranes, like eukaryotic cell membranes, are known to contain domains of specific lipid and protein composition. Recently, using the membrane-binding fluorescent dye FM4-64, helix-like lipid structures extending along the long axis of the cell and consisting of negatively charged phospholipids were detected in the rod-shaped bacterium Bacillus subtilis. It was also shown that the cardiolipin-specific dye, nonyl acridine orange (NAO), is preferentially distributed at the cell poles and in the septal regions in both Escherichia coli and B. subtilis. These results suggest that phosphatidylglycerol is the principal component of the observed spiral domains in B. subtilis. Here, using the fluorescent dyes FM4-64 and NAO, we examined whether these lipid domains are linked to the presence of cell wall peptidoglycan. We show that in protoplasted cells, devoid of the peptidoglycan layer, helix-like lipid structures are not preserved. Specific lipid domains are also missing in cells depleted of MurG, an enzyme involved in peptidoglycan synthesis, indicating a link between lipid domain formation and peptidoglycan synthesis.  相似文献   

2.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

3.
MinD, a well-conserved bacterial amphitropic protein involved in spatial regulation of cell division, has a typical feature of reversible binding to the membrane. MinD shows a clear preference for acidic phospholipids organized into lipid domains in bacterial membrane. We have shown that binding of MinD may change the dynamics of model and native membranes (see accompanying paper [1]). On the other hand, MinD dimerization and anchoring could be enhanced on pre-existing anionic phospholipid domains. We have tested MinD binding to model membranes in which acidic and zwitterionic phospholipids are either well-mixed or segregated to phase domains. The phase separation was achieved in binary mixtures of 1-Stearoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol] (SOPG) with 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC) or 1,2-Distearoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DSPG) and binding to these membranes was compared with that to a fluid mixture of SOPG with 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (SOPC). The results demonstrate that MinD binding to the membrane is enhanced by segregation of anionic phospholipids to fluid domains in a gel-phase environment and, moreover, the protein stabilizes such domains. This suggests that an uneven binding of MinD to the heterogeneous native membrane is possible, leading to formation of a lipid-specific distribution pattern of MinD and/or modulation of its temporal behavior.  相似文献   

4.
We have investigated the effect of the interaction of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of model lipid bilayer membranes generated from the total membrane lipids of Acholeplasma laidlawii B and Escherichia coli. The A. laidlawii B membrane lipids consist primarily of neutral glycolipids and anionic phospholipids, while the E. coli inner membrane lipids consist exclusively of zwitterionic and anionic phospholipids. We show that the addition of GS at a lipid-to-peptide molar ratio of 25 strongly promotes the formation of bicontinuous inverted cubic phases in both of these lipid model membranes, predominantly of space group Pn3m. In addition, the presence of GS causes a thinning of the liquid-crystalline bilayer and a reduction in the lattice spacing of the inverted cubic phase which can form in the GS-free membrane lipid extracts at sufficiently high temperatures. This latter finding implies that GS potentiates the formation of an inverted cubic phase by increasing the negative curvature stress in the host lipid bilayer. This effect may be an important aspect of the permeabilization and eventual disruption of the lipid bilayer phase of biological membranes, which appears to be the mechanism by which GS kills bacterial cells and lysis erythrocytes.  相似文献   

5.
MinD, a well-conserved bacterial amphitropic protein involved in spatial regulation of cell division, has a typical feature of reversible binding to the membrane. MinD shows a clear preference for acidic phospholipids organized into lipid domains in bacterial membrane. We have shown that binding of MinD may change the dynamics of model and native membranes (see accompanying paper [1]). On the other hand, MinD dimerization and anchoring could be enhanced on pre-existing anionic phospholipid domains. We have tested MinD binding to model membranes in which acidic and zwitterionic phospholipids are either well-mixed or segregated to phase domains. The phase separation was achieved in binary mixtures of 1-Stearoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol] (SOPG) with 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC) or 1,2-Distearoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (DSPG) and binding to these membranes was compared with that to a fluid mixture of SOPG with 1-Stearoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (SOPC). The results demonstrate that MinD binding to the membrane is enhanced by segregation of anionic phospholipids to fluid domains in a gel-phase environment and, moreover, the protein stabilizes such domains. This suggests that an uneven binding of MinD to the heterogeneous native membrane is possible, leading to formation of a lipid-specific distribution pattern of MinD and/or modulation of its temporal behavior.  相似文献   

6.
We have studied how membrane interactions of two synthetic cationic antimicrobial peptides with alternating alpha- and beta-amino acid residues ("alpha/beta-peptides") impact toxicity to different prokaryotes. Electron microscopic examination of thin sections of Escherichia coli and of Bacillus subtilis exposed to these two alpha/beta-peptides reveals different structural changes in the membranes of these bacteria. These two peptides also have very different effects on the morphology of liposomes composed of phosphatidylethanolamine and phosphatidylglycerol in a 2:1 molar ratio. Freeze fracture electron microscopy indicates that with this lipid mixture, alpha/beta-peptide I induces the formation of a sponge phase. 31P NMR and X-ray diffraction are consistent with this conclusion. In contrast, with alpha/beta-peptide II and this same lipid mixture, a lamellar phase is maintained, but with a drastically reduced d-spacing. alpha/beta-Peptide II is more lytic to liposomes composed of these lipids than is I. These findings are consistent with the greater toxicity of alpha/beta-peptide II, relative to alpha/beta-peptide I, to E. coli, a bacterium having a high content of phosphatidylethanolamine. In contrast, both alpha/beta-peptides display similar toxicity toward B. subtilis, in accord with the greater anionic lipid composition in its membrane. This work shows that variations in the selectivity of these peptidic antimicrobial peptides toward different strains of bacteria can be partly determined by the lipid composition of the bacterial cell membrane.  相似文献   

7.
Epand RM  Maekawa S  Yip CM  Epand RF 《Biochemistry》2001,40(35):10514-10521
A major protein of neuronal rafts, NAP-22, binds specifically to cholesterol. We demonstrate by circular dichroism that NAP-22 contains a significant amount of beta-structure that is not sensitive to binding of the protein to membranes, suggesting that a major portion of the protein does not insert deeply into the membrane. The free energy of binding of NAP-22 to liposomes of dioleoylphosphatidylcholine with 40% cholesterol is -7.3 +/- 0.5 kcal/mol. NAP-22 mixed with dipalmitoylphosphatidylcholine and 40% cholesterol partitions into the detergent insoluble fraction in the presence of 1% Triton X-100. NAP-22 also causes this insoluble fraction to become enriched in cholesterol relative to phospholipid, again demonstrating the ability of this protein to segregate cholesterol and phospholipids into domains. Differential scanning calorimetry results demonstrate that NAP-22 promotes domain formation in liposomes composed of cholesterol and phosphatidylcholine. This is shown by NAP-22-promoted changes in the shape and enthalpy of the phase transition of phosphatidylcholine as well as by the appearance of cholesterol crystallite transitions in membranes composed of phosphatidylcholine with either saturated or unsaturated acyl chains. In situ atomic force microscopy revealed a marked change in the surface morphology of a supported bilayer of dioleoylphosphatidylcholine with 0.4 mole fraction of cholesterol upon addition of NAP-22. Prior to the addition of the protein, the bilayer appears to be a molecularly smooth structure with uniform thickness. Addition of NAP-22 resulted in the rapid formation of localized raised bilayer domains. Remarkably, there was no gross disruption or erosion of the bilayer but rather simply an apparent rearrangement of the lipid bilayer structure due to the interaction of NAP-22 with the lipid. Our results demonstrate that NAP-22 can induce the formation of cholesterol-rich domains in membranes. This is likely to be relevant in neuronal membrane domains that are rich in NAP-22.  相似文献   

8.
In previous studies, it has been suggested that chilling induced activation of human platelets is related to a lipid phase transition seen in membrane lipids. Those studies showed a single, surprisingly cooperative transition in human platelets, as determined by Fourier transform infrared (FTIR) spectroscopy, findings that are confirmed here with calorimetric measurements. Such transitions have now been studied in membrane fractions obtained from the platelets and it is reported that all fractions and purified phospholipids show similar transitions. In order to obtain these data it was necessary to develop means for separating these fractions. Therefore, a novel method for isolation and separation of dense tubular system (DTS) and plasma membranes in human platelets is described here. Lipid analysis showed that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were the dominant phospholipids in both fractions, whereas cholesterol and sphingomyelin (SM) were predominantly located in the plasma membranes. Thermotropic phase transitions in the two membrane fractions, determined by differential scanning calorimetry (DSC) and FTIR spectroscopy were found to occur at about 15 degrees C, similar to the Tm of intact human platelets. These data are discussed in relation to the role of the DTS and plasma membranes in the cold-induced activation of human platelets.  相似文献   

9.
Recently, use of the cardiolipin (CL)-specific fluorescent dye 10-N-nonyl-acridine orange (NAO) revealed CL-rich domains in the Escherichia coli membrane (E. Mileykovskaya and W. Dowhan, J. Bacteriol. 182: 1172-1175, 2000). Staining of Bacillus subtilis cells with NAO showed that there were green fluorescence domains in the septal regions and at the poles. These fluorescence domains were scarcely detectable in exponentially growing cells of the clsA-disrupted mutant lacking detectable CL. In sporulating cells with a wild-type lipid composition, fluorescence domains were observed in the polar septa and on the engulfment and forespore membranes. Both in the clsA-disrupted mutant and in a mutant with disruptions in all three of the paralogous genes (clsA, ywjE, and ywiE) for CL synthase, these domains did not vanish but appeared later, after sporulation initiation. A red shift in the fluorescence due to stacking of two dye molecules and the lipid composition suggested that a small amount of CL was present in sporulating cells of the mutants. Mass spectrometry analyses revealed the presence of CL in these mutant cells. At a later stage during sporulation of the mutants the frequency of heat-resistant cells that could form colonies after heat treatment was lower. The frequency of sporulation of these cells at 24 h after sporulation initiation was 30 to 50% of the frequency of the wild type. These results indicate that CL-rich domains are present in the polar septal membrane and in the engulfment and forespore membranes during the sporulation phase even in a B. subtilis mutant with disruptions in all three paralogous genes, as well as in the membranes of the medial septa and at the poles during the exponential growth phase of wild-type cells. The results further suggest that the CL-rich domains in the polar septal membrane and engulfment and forespore membranes are involved in sporulation.  相似文献   

10.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

11.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

12.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

13.
The use of the fluorescent fatty acid, parinaric acid (9, 11, 13, 15-octadecatetraenoic acid) (PnA), was studied in cells of an unsaturated fatty acid auxotroph of Escherichia coli. Growth conditions were found that permitted biosynthetic incorporation of PnA (up to 3%) into membrane phospholipids during growth on oleic or elaidic acid. Fluorescence measurements of incorporated PnA revealed phase transitions in cells, membranes, and phospholipids at temperatures that reflected the fatty acid composition of the sample. Transitions had a well-defined onset from high temperature, while the lower and end point was less well defined. cis- and trans-PnA (cis, trnas, trans, cis, and all trans, respectively) gave comparable results. Similar phase transitions were detected with PnA, which was not biosynthetically incorporated. Fluorescence of tryptophan was measured in E. coli membranes as a function of concentration of PnA. Significant quenching of tryptophan fluorescence by PnA was observed.  相似文献   

14.
D Otten  L L?bbecke    K Beyer 《Biophysical journal》1995,68(2):584-597
The perturbation of phospholipid bilayer membranes by a nonionic detergent, octaethyleneglycol mono-n-dodecylether (C12E8), was investigated by 2H- and 31P-NMR, static and dynamic light scattering, and differential scanning calorimetry. Preequilibrated mixtures of the saturated phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphorylcholine (DLPC) with the detergent were studied over a broad temperature range including the temperature of the main thermotropic phase transition of the pure phospholipids. Above this temperature, at a phospholipid/detergent molar ratio 2:1, the membranes were oriented in the magnetic field. Cooling of the mixtures below the thermotropic phase transition temperatures of the pure phospholipids led to micelle formation. In mixtures of DPPC and DMPC with C12E8, a narrow calorimetric signal at the onset temperature of the solubilization suggested that micelle formation was related to the disorder-order transition in the phospholipid acyl chains. The particle size changed from 150 nm to approximately 7 nm over the temperature range of the bilayer-micelle transition. The spontaneous orientation of the membranes at high temperatures enabled the direct determination of segmental order parameters from the deuterium spectra. The order parameter profiles of the phospholipid acyl chains could be attributed to slow fluctuations of the whole membrane and to detergent-induced local perturbations of the bilayer order. The packing constraints in the mixed bilayers that eventually lead to bilayer solubilization were reflected by the order parameters of the interfacial phospholipid acyl chain segments and of the phospholipid headgroup. These results are interpreted in terms of the changing average shape of the component molecules. Considering the decreasing cross sectional areas in the acyl chain region and the increasing hydration of the detergent headgroups, the bilayer-micelle transition is the result of an imbalance in the chain and headgroup repulsion. A neutral or pivotal plane can be defined on the basis of the temperature dependence of the interfacial quadrupolar splittings.  相似文献   

15.
The mechanism by which phospholipids are transported across biogenic membranes, such as the bacterial cytoplasmic membrane, is unknown. We hypothesized that this process is mediated by the presence of the membrane-spanning segments of inner membrane proteins, rather than by dedicated flippases. In support of the hypothesis, it was demonstrated that transmembrane alpha-helical peptides, mimicking the membrane-spanning segments, mediate flop of 2-6-(7-nitro-2,1,3-benzoxadiazol-4-yl) aminocaproyl (C6-NBD)-phospholipids (Kol, M. A., de Kroon, A. I., Rijkers, D. T., Killian, J. A., and de Kruijff, B. (2001) Biochemistry 40, 10500-10506). Here the dithionite reduction assay was used to measure transbilayer equilibration of C6-NBD-phospholipids in proteoliposomes, composed of Escherichia coli phospholipids and a subset of bacterial membrane proteins. It is shown that two well characterized integral proteins of the bacterial cytoplasmic membrane, leader peptidase and the potassium channel KcsA, induce phospholipid translocation, most likely by their transmembrane domains. In contrast, the ATP-binding cassette transporter from the E. coli inner membrane MsbA, a putative lipid flippase, did not mediate phospholipid translocation, irrespective of the presence of ATP. OmpT, an outer membrane protein from E. coli, did not facilitate flop either, demonstrating specificity of protein-mediated phospholipid translocation. The results are discussed in the light of phospholipid transport across the E. coli inner membrane.  相似文献   

16.
MurG is a peripheral membrane protein that is one of the key enzymes in peptidoglycan biosynthesis. The crystal structure of Escherichia coli MurG (S. Ha, D. Walker, Y. Shi, and S. Walker, Protein Sci. 9:1045-1052, 2000) contains a hydrophobic patch surrounded by basic residues that may represent a membrane association site. To allow investigation of the membrane interaction of MurG on a molecular level, we expressed and purified MurG from E. coli in the absence of detergent. Surprisingly, we found that lipid vesicles copurify with MurG. Freeze fracture electron microscopy of whole cells and lysates suggested that these vesicles are derived from vesicular intracellular membranes that are formed during overexpression. This is the first study which shows that overexpression of a peripheral membrane protein results in formation of additional membranes within the cell. The cardiolipin content of cells overexpressing MurG was increased from 1 +/- 1 to 7 +/- 1 mol% compared to nonoverexpressing cells. The lipids that copurify with MurG were even further enriched in cardiolipin (13 +/- 4 mol%). MurG activity measurements of lipid I, its natural substrate, incorporated in pure lipid vesicles showed that the MurG activity is higher for vesicles containing cardiolipin than for vesicles with phosphatidylglycerol. These findings support the suggestion that MurG interacts with phospholipids of the bacterial membrane. In addition, the results show a special role for cardiolipin in the MurG-membrane interaction.  相似文献   

17.
Seasonal alterations in the ultrastructure of the plasma membrane produced by slow freezing were examined in cortical parenchyma cells of mulberry twigs (Morus bombyciz Koidz. cv. Goroji) grown in northern Japan. In freezing-sensitive summer, freezing produced distinct aparticulate domains with accompanying inverted hexagonalII (HII) phase transitions in the plasma membrane. In autumn and spring, during cold acclimation and deacclimation, freezing produced aparticulate domains in the plasma membrane without accompanying Hii phase transitions. In winter, when the twigs were freezing-tolerant, freezing did not produce ultrastructural alterations in the plasma membrane. A significant relationship was recognized between the percentages of cells with aparticulate domains in the plasma membrane, regardless of the presence or absence of HII phase transitions, and the occurrence of freezing injury throughout all seasons and at all freezing temperatures tested in each season. The aparticulate domains in the plasma membranes were shown to be produced by the close apposition of membranes due to freezing-induced dehydration and deformation of cells. Although the precise mechanisms that cause injury as a result of the formation of aparticulate domains in the plasma membrane remain unclear, our results indicate that the development of cold acclimation paralleled the process whereby cells developed the ability to reduce and finally to prevent the formation of aparticulate domains in the plasma membrane that would otherwise result from freezing-induced cellular dehydration and deformation that brings membranes into close proximity with one another.  相似文献   

18.
Ancestral lipid biosynthesis and early membrane evolution   总被引:5,自引:0,他引:5  
Archaea possess unique membrane phospholipids that generally comprise isoprenoid ethers built on sn-glycerol-1-phosphate (G1P). By contrast, bacterial and eukaryal membrane phospholipids are fatty acid esters linked to sn-glycerol-3-phosphate (G3P). The two key dehydrogenase enzymes that produce G1P and G3P, G1PDH and G3PDH, respectively, are not homologous. Various models propose that these enzymes originated during the speciation of the two prokaryotic domains, and the nature (and even the very existence) of lipid membranes in the last universal common ancestor (cenancestor) is subject to debate. G1PDH and G3PDH belong to two separate superfamilies that are universally distributed, suggesting that members of both superfamilies existed in the cenancestor. Furthermore, archaea possess homologues to known bacterial genes involved in fatty acid metabolism and synthesize fatty acid phospholipids. The cenancestor seems likely to have been endowed with membrane lipids whose synthesis was enzymatic but probably non-stereospecific.  相似文献   

19.
The influence of the addition of Ca2+ on the phase behaviour of vesicles, composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidic acid (DMPA) in a ratio of 4 to 1, has been investigated by means of turbidity measurements. As expected one single phase transition for the mixed phospholipids was observed in the absence of Ca2+. Passing through the temperature range of this transition after the addition of Ca2+, conditions appeared to favor fusion of the vesicles. A possible reason for this is that during the transition Ca2+ may permeate through the vesicle membranes and gain access to the inside DMPA binding sites. Therefore it is not unambiguously possible to determine phase transition temperatures from the turbidity changes that occur under these conditions. However, when within the temperature range of the phase transition of the mixed phospholipids the influence of Ca2+ addition to the vesicles was recorded isothermally, at each temperature separately, the final plot of turbidity versus temperature turned out to be far less confused by fusion events and adopted the form of two separate phase transitions. The temperatures at which these two transitions occur closely resemble the phase transition temperatures that may be observed in the absence of Ca2+ for DMPA and DPPC alone, 39 degrees C and 43 degrees C respectively. The results of this study suggest that when Ca2+ has only access to the outside of the vesicle membranes it may segregate the neutral and the acidic phospholipids into separate domains, both domains adopting their proper phase condition at the actual temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In previous studies, it has been suggested that chilling induced activation of human platelets is related to a lipid phase transition seen in membrane lipids. Those studies showed a single, surprisingly cooperative transition in human platelets, as determined by Fourier transform infrared (FTIR) spectroscopy, findings that are confirmed here with calorimetric measurements. Such transitions have now been studied in membrane fractions obtained from the platelets and it is reported that all fractions and purified phospholipids show similar transitions. In order to obtain these data it was necessary to develop means for separating these fractions. Therefore, a novel method for isolation and separation of dense tubular system (DTS) and plasma membranes in human platelets is described here. Lipid analysis showed that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were the dominant phospholipids in both fractions, whereas cholesterol and sphingomyelin (SM) were predominantly located in the plasma membranes. Thermotropic phase transitions in the two membrane fractions, determined by differential scanning calorimetry (DSC) and FTIR spectroscopy were found to occur at about 15 degrees C, similar to the Tm of intact human platelets. These data are discussed in relation to the role of the DTS and plasma membranes in the cold-induced activation of human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号