首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspases are divided into two classes: initiator caspases, which include caspase-8 and -9 and possess long prodomains, and effector caspases, which include caspase-3 and -7 and possess short prodomains. Recently, we demonstrated that glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the prodomain of procaspase-2, thereby disrupting its autoactivation and the induction of apoptosis. Here we show that GMEB1 is also capable of binding to procaspase-8 and -9. GMEB1 attenuated the Fas-mediated activation of these caspases and the subsequent apoptosis. The knockdown of endogenous GMEB1 using RNA interference revealed that cells with decreased GMEB1 expression are more sensitive to stress and undergo accelerated apoptosis. Transgenic mice expressing a neurospecific GMEB1 had smaller cerebral infarcts and less brain swelling than wild-type mice in response to transient focal ischemia. These results suggest that GMEB1 is an endogenous regulator that selectively binds to initiator procaspases and inhibits caspase-induced apoptosis.  相似文献   

2.
The production of bio-active interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves binding of the caspase-1 prodomain to a caspase recruitment domain (CARD)-containing serine/threonine kinase known as RIP2/CARDIAK/RICK. We have identified a novel protein, COP (CARD only protein), which has a high degree of sequence identity to the caspase-1 prodomain. COP binds to both RIP2 and the caspase-1 prodomain and inhibits RIP2-induced caspase-1 oligomerization. COP inhibits caspase- 1-induced IL-1beta secretion as well as lipopolysaccharide-induced IL-1beta secretion in transfected cells. Our data indicate that COP can regulate IL-1beta secretion, implying that COP may play a role in down-regulating inflammatory responses analogous to the CARD protein ICEBERG.  相似文献   

3.
Caspase-2 is unique among mammalian caspases because it localizes to the nucleus in a prodomain-dependent manner. The caspase-2 prodomain also regulates caspase-2 activity via a caspase recruitment domain that mediates oligomerization of procaspase-2 molecules and their subsequent autoactivation. In this study we sought to map specific functional regions in the caspase-2 prodomain that regulate its nuclear transport and also its activation. Our data indicate that caspase-2 contains a classical nuclear localization signal (NLS) at the C terminus of the prodomain which is recognized by the importin alpha/beta heterodimer. The mutation of a conserved Lys residue in the NLS abolishes nuclear localization of caspase-2 and binding to the importin alpha/beta heterodimer. Although caspase-2 is imported into the nucleus, mutants lacking the NLS were still capable of inducing apoptosis upon overexpression in transfected cells. We define a region in the prodomain that regulates the ability of caspase-2 to form dot- and filament-like structures when ectopically expressed, which in turn promotes cell killing. Our data provides a mechanism for caspase-2 nuclear import and demonstrate that association of procaspase-2 into higher order structures, rather than its nuclear localization, is required for caspase-2 activation and its ability to induce apoptosis.  相似文献   

4.
ICEBERG: a novel inhibitor of interleukin-1beta generation   总被引:8,自引:0,他引:8  
ProIL-1beta is a proinflammatory cytokine that is proteolytically processed to its active form by caspase-1. Upon receipt of a proinflammatory stimulus, an upstream adaptor, RIP2, binds and oligomerizes caspase-1 zymogen, promoting its autoactivation. ICEBERG is a novel protein that inhibits generation of IL-1beta by interacting with caspase-1 and preventing its association with RIP2. ICEBERG is induced by proinflammatory stimuli, suggesting that it may be part of a negative feedback loop. Consistent with this, enforced retroviral expression of ICEBERG inhibits lipopolysaccharide-induced IL-1beta generation. The structure of ICEBERG reveals it to be a member of the death-domain-fold superfamily. The distribution of surface charge is complementary to the homologous prodomain of caspase-1, suggesting that charge-charge interactions mediate binding of ICEBERG to the prodomain of caspase-1.  相似文献   

5.
A 21-bp element called glucocorticoid modulatory element (GME) modulates the glucocorticoid receptor-mediated responses via the binding of an as yet poorly characterized transacting complex of proteins containing the 88-kDa GMEB1 and the 67-kDa GMEB2. Using heat shock protein 27 (HSP27) as bait in the yeast two-hybrid assay, we cloned a 1.83-kb cDNA encoding a novel 573-amino acid protein called human GMEB1 (hGMEB1). hGMEB1 possesses a KDWK domain, contains sequences almost identical (36/38) to three tryptic peptides of rat GMEB1 and shares 38% identity with rat GMEB2. hGMEB1 is ubiquitously expressed as a 85-kDa protein in all cell lines and tissues examined. In vitro translated hGMEB1 bound specifically to GME oligonucleotides yielding a complex of similar size to the complex obtained using rat liver nuclear extracts. Both complexes were supershifted with an antibody specific to hGMEB1. Co-immunoprecipitation experiments confirmed the in vivo interaction of HSP27 with hGMEB1.  相似文献   

6.
Fas- and tumor necrosis factor receptor 1 (TNFR1)-induced apoptosis is mediated by the interaction of FADD with caspase-8. Here, we report that the bovine herpesvirus 4 (BHV4) BORFE2 gene encodes a protein that inhibits Fas- and TNFR1-induced apoptosis and contains death effector domains (DEDs). Using the yeast two-hybrid system, we found that the BORFE2 protein interacts with the prodomain of caspase-8. Furthermore, we show that BHV4 BORFE2 is a member of a family of DED-containing proteins that includes other gamma-2 herpesviruses, such as Kaposi's sarcoma-associated herpesvirus and herpesvirus saimiri.  相似文献   

7.
Apoptosis is a major form of cell death, characterized by a series of morphological changes induced by cleaving cytoplasmic and nuclear proteins via active caspases. The data presented here show, by fluorescence microscopic and immunoblotting analyses, that a prodomain of caspase-7 inhibits its nuclear translocation and apoptosis-inducing activity. This nuclear localization is dependent on the presence of a basic tetrapeptide that is conserved in mammalian and Xenopus caspase-7 and that is located downstream of a cleavage site between a prodomain and a catalytic protease domain. Furthermore, an attachment of the caspase-7 prodomain (31 amino acids) represses the nuclear transport of a fusion protein of a heterologous protein and the caspase-7 nuclear localization signal (19 amino acids), suggesting that the inhibition of nuclear localization by the prodomain is mediated by the interaction of these short peptides.  相似文献   

8.
9.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

10.
Activated caspase-3 is considered an important enzyme in the cell death pathway. To study the specific role of caspase-3 activation in neuronal cells, we generated a stable tetracycline-regulated SK-N-MC neuroblastoma cell line, which expressed a highly efficient self-activating chimeric caspase-3, consisting of the caspase-1 prodomain fused to the caspase-3 catalytic domain. Under expression-inducing conditions, we observed a time-dependent increase of processed caspase-3 by immunostaining for the active form of the enzyme, intracellular caspase-3 enzyme activity, as well as poly(ADP-ribose) polymerase (PARP) cleavage. Induced expression of the caspase fusion protein showed predominantly caspase-3 activity without any apoptotic morphological changes. In contrast, staurosporine treatment of the same cells resulted in activation of multiple caspases and profound apoptotic morphology. Our work provides evidence that auto-activation of caspase-3 can be efficiently achieved with a longer prodomain and that neuronal cell apoptosis may require another caspase or activation of multiple caspase enzymes.  相似文献   

11.
Caspase-1 (interleukin-1beta converting enzyme) is produced in the form of a latent precursor, which is cleaved to yield a prodomain in addition to the p20 and p10 subunits. It has been established that the (p20/p10)(2) heterotetramer processes the latent precursor of interleukin-1beta into an active form during apoptosis, but the function of the residual prodomain of caspase-1 (Pro-C1) has not been established. To evaluate the involvement of Pro-C1 in apoptosis, a Pro-C1 expression vector was transfected into the HeLa cell line, which is susceptible to Fas-mediated apoptosis. Expression of recombinant Pro-C1 in HeLa cells enhanced apoptosis mediated by Fas, but not etoposide-induced apoptosis. This enhancement of Fas-mediated apoptosis was abolished by inhibitors of caspase-8 (Ile-Glu-Thr-Asp-fluoromethyl ketone) and caspase-3 (Asp-Glu-Val-Asp-aldehyde) but was only slightly diminished by an inhibitor of caspase-1 (acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone). During apoptosis induced by an agonistic anti-Fas antibody, the activation of caspase-8 and caspase-3 was more pronounced and occurred more rapidly in HeLa/Pro-C1 cells than in the empty vector transfectant (HeLa/vec) cells; in contrast, caspase-1 was not activated in either HeLa/Pro-C1 or HeLa/vec cells. These results demonstrate an additional and novel function for caspase-1 in which Pro-C1 acts to enhance Fas-mediated apoptosis, most probably through facilitation of the activation of caspase-8.  相似文献   

12.
Caspases are a family of cysteine proteases with roles in cytokine maturation or apoptosis. Caspase-2 was the first pro-apoptotic caspase identified, but its functions in apoptotic signal transduction are still being elucidated. This study examined the regulation of the activity of caspase-2 using recombinant proteins and a yeast-based system. Our data suggest that for human caspase-2 to be active its large and small subunits must be separated. For maximal activity its prodomain must also be removed. Consistent with its proposed identity as an upstream caspase, caspase-2 could provoke the activation of caspase-7. Caspase-2 was not subject to inhibition by members of the IAP family of apoptosis inhibitors.  相似文献   

13.
Caspase-3, a key molecule in apoptosis, has been extensively studied in cell culture system; however, it has been less well characterized in vivo because certain mediators are required for the proteolytic activation of effector caspases, including caspase-3. In this study, various forms of caspase-3 with the C-terminal GFP tag were inserted into the pCS2+ plasmid, and the expression patterns of caspase-3 proteins were characterized in a zebrafish model system using microinjection of nucleic acids into zebrafish embryos. We have verified that active caspase-3 was generated by its autocatalytic activity under the condition of caspase-2 prodomain (C2P)-caspase-3-GFP overexpression, indicating that the C2P domain is crucial for the activation of caspase-3. We also confirmed that the C2P domain plays an important role in regulating the nuclear localization of the C2P-caspase-3 chimeric protein. We used this expression system to establish an animal model system suitable for the investigation of the functional characteristics of caspase-3 in vivo. Thus, our study provides a useful and specific tool for investigating the molecular mechanisms by which active caspase-3 regulates apoptosis during embryonic development.  相似文献   

14.
Changes in ionic homeostasis are early events leading up to the commitment to apoptosis. Although the direct effects of cations on caspase-3 activity have been examined, comparable studies on procaspase-3 are lacking. In addition, the effects of salts on caspase structure have not been examined. We have studied the effects of cations on the activities and conformations of caspase-3 and an uncleavable mutant of procaspase-3 that is enzymatically active. The results show that caspase-3 is more sensitive to changes in pH and ion concentrations than is the zymogen. This is due to the loss of both an intact intersubunit linker and the prodomain. The results show that, although the caspase-3 subunits reassemble to the heterotetramer, the activity return is low after the protein is incubated at or below pH 4.5 and then returned to pH 7.5. The data further show that the irreversible step in assembly results from heterotetramer rather than heterodimer dissociation and demonstrate that the active site does not form properly following reassembly. However, active-site formation is fully reversible when reassembly occurs in the presence of the prodomain, and this effect is specific for the propeptide of caspase-3. The data show that the prodomain facilitates both dimerization and active-site formation in addition to stabilizing the native structure. Overall, the results show that the prodomain acts as an intramolecular chaperone during assembly of the (pro)caspase subunits and increases the efficiency of formation of the native conformation.  相似文献   

15.
The cysteine protease, caspase-8, undergoes dimerization, processing, and activation following stimulation of cells with death ligands such as TRAIL, and mediates TRAIL induction of the extrinsic apoptosis pathway. In addition, caspase-8 mediates TRAIL-induced activation of NF-κB and upregulation of immunosuppressive chemokines/cytokines, via a mechanism independent of caspase-8 catalytic activity. The gene encoding procaspase-8 is mutated in 10% of human head and neck squamous cell carcinomas (HNSCCs). Despite a paucity of experimental evidence, HNSCC-associated caspase-8 mutations are commonly assumed to be loss of function. To investigate their functional properties and phenotypic effects, 18 HNSCC-associated caspase-8 mutants were expressed in doxycycline-inducible fashion in cell line models wherein the endogenous wild-type caspase-8 was deleted. We observed that 5/8 mutants in the amino-terminal prodomain, but 0/10 mutants in the carboxyl-terminal catalytic region, retained an ability to mediate TRAIL-induced apoptosis. Caspase-8 proteins with mutations in the prodomain were defective in dimerization, whereas all ten of the catalytic region mutants efficiently dimerized, revealing an inverse relationship between dimerization and apoptosis induction for the mutant proteins. Roughly half (3/8) of the prodomain mutants and 9/10 of the catalytic region mutants retained the ability to mediate TRAIL induction of immunosuppressive CXCL1, IL-6, or IL-8. Doxycycline-induced expression of wild-type caspase-8 or a representative mutant led to an increased percentage of T and NKT cells in syngeneic HNSCC xenograft tumors. These findings demonstrate that HNSCC-associated caspase-8 mutants retain properties that may influence TRAIL-mediated apoptosis and cytokine induction, as well as the composition of the tumor microenvironment.Subject terms: Medical research, Preclinical research  相似文献   

16.
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.  相似文献   

17.
The adenovirus E1B 19K gene product is an inhibitor of apoptosis induced by tumor necrosis factor-alpha (TNF-alpha) during viral infection. We report that E1B 19K inhibited neither caspase-8 activation nor caspase-8-dependent Bid cleavage by TNF-alpha. Rather, TNF-alpha induced a tBid-dependent conformational change in Bax that allowed an interaction between E1B 19K and conformationally altered Bax, which caused inhibition of cytochrome c release and caspase-9 activation. E1B 19K expression interrupted caspase-3 processing, permitting cleavage to remove the p12 subunit but not the prodomain consistent with caspase-8 and not caspase-9 enzymatic activity. Thus, E1B 19K blocks TNF-alpha-mediated death signaling by inhibiting a specific form of Bax that interrupts caspase activation downstream of caspase-8 and upstream of caspase-9.  相似文献   

18.
Caspase-8 and -10 are thought to be involved in a signaling pathway leading to death receptor-mediated apoptosis. The prodomains of these caspases are known to form fibrous structures in the perinuclear region when overexpressed, though the meaning of the structures remains unclear. In a previous study we showed that the overexpressed caspase-8 or -10 prodomain (PDCasp8 or PDCasp10) did not induce cell death, and we hypothesized that these prodomains interfere with the receptor-mediated cell death signaling pathway. Indeed, in 293, HeLa and Jurkat cells, cell death mediated by agonistic anti-Fas antibody, TRAIL or overexpression of full-length caspase-8 was significantly inhibited by overexpression of PDCasp8 or PDCasp10 which colocalized with the Golgi complex and with overexpressed FADD. However, when about 20 amino acid residues were deleted from either terminus of the caspase-10 prodomain (amino acid residue 1 to 219), the ability to inhibit Fas-mediated cell death was lost. Interestingly, these deletion mutants also lost the ability to make fibrous structures and to bind FADD, suggesting that FADD binding is important for their function, and that PDCasp8 and PDCasp10 act as dominant-negative inhibitors.  相似文献   

19.
Yao Z  Duan S  Hou D  Heese K  Wu M 《The EMBO journal》2007,26(4):1068-1080
Activation of the apical caspase-8 is crucial to the extrinsic apoptotic pathway. Although the death effector domain (DED) of caspase-8 has been reported to be involved in death-inducing signaling complex formation, the detailed mechanism of how DED functions in regulating apoptosis remains largely unknown. Here, we demonstrate that the prodomain of the caspase-8/Mch5 can be further cleaved between two tandemly repeated DEDs (DEDa-DEDb) at the amino-acid residue Asp129 by caspase-8 itself. The DEDa fragment generated from the endogenous caspase-8 was detected in isolated nucleoli upon treatment with TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Cleaved DEDa appears to translocate into the nucleus by association with extracellular signal-regulated protein kinases-1/2 (ERK1/2). Elimination of ERK1/2 expression by RNA interference resulted in a significant attenuation of nuclear entry of DEDa and reduced caspase-8-dependent apoptosis. In the nucleus, DEDa interacts with TOPORS, a p53 and topoisomerase I binding protein, and possibly displaces p53 from TOPORS, allowing p53 to stimulate caspase-8 gene expression. In summary, we postulate a positive feedback loop involving DEDa, which enables the continual replenishment of procaspase-8 during apoptosis.  相似文献   

20.
We report here the identification and functional characterization of two new human caspase recruitment domain (CARD) molecules, termed Pseudo-interleukin-1beta converting enzyme (ICE) and ICEBERG. Both proteins share a high degree of homology, reaching 92% and 53% identity, respectively, to the prodomain of caspase-1/ICE. Interestingly, both Pseudo-ICE and ICEBERG are mapped to chromosome 11q22 that bears caspases-1, -4- and -5 genes, all involved in cytokine production rather than in apoptosis. We demonstrate that Pseudo-ICE and ICEBERG interact physically with caspase-1 and block, in a monocytic cell line, the interferon-gamma and lipopolysaccharide-induced secretion of interleukin-1beta which is a well-known consequence of caspase-1 activation. Moreover, Pseudo-ICE, but not ICEBERG, interacts with the CARD-containing kinase RICK/RIP2/CARDIAK and activates NF-kappaB. Our data suggest that Pseudo-ICE and ICEBERG are intracellular regulators of caspase-1 activation and could play a role in the regulation of IL-1beta secretion and NF-kappaB activation during the pro-inflammatory cytokine response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号