首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between the MinD and MinE proteins are required for proper placement of the Escherichia coli division septum. The site within MinE that is required for interaction with MinD was mapped by studying the effects of site-directed minE mutations on MinD-MinE interactions in yeast two-hybrid and three-hybrid experiments. This confirmed that the MinE N-terminal domain is responsible for the interaction of MinE with MinD. Mutations that interfered with the interaction defined an extended surface on one face of the alpha-helical region of the MinE N-terminal domain, consistent with the idea that the MinE-MinD interaction involves formation of a coiled-coil structure by interaction with a complementary helical surface within MinD.  相似文献   

2.
The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (Kd) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The Kd for MinD (1.8 μm) in the presence of ATP was smaller than for MinE (12.1 μm) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (kon). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential.  相似文献   

3.
Division site selection in Escherichia coli requires that the MinD protein interact with itself and with MinC and MinE. MinD is a member of the NifH-ArsA-Par-MinD subgroup of ATPases. The MinE-MinD interaction results in activation of MinD ATPase activity in the presence of membrane vesicles. The sites within MinD responsible for its interaction with MinC and MinE were studied by site-directed mutagenesis and yeast two-hybrid analysis, guided by the known three-dimensional structure of MinD proteins. This provided evidence that MinC and MinE bind to overlapping sites on the MinD surface. The results also suggested that MinE and the invariant Lys11 residue in the ATPase P-loop of MinD compete for binding to a common site within the MinD structure, thereby providing a plausible structural basis for the ability of MinE to activate the ATPase activity of MinD.  相似文献   

4.
MinD is a component of the Min system involved in the spatial regulation of cell division. It is an ATPase in the MinD/ParA/Mrp deviant Walker A motif family which is within the P loop GTPase superfamily. Its ATPase activity is stimulated by MinE; however, the mechanism of this activation is unclear. MinD forms a symmetric dimer with two binding sites for MinE; however, a recent model suggested that MinE occupying one site was sufficient for ATP hydrolysis. By generating heterodimers with one binding site for MinE we show that one binding site is sufficient for stimulation of the MinD ATPase. Furthermore, comparison of structures of MinD and related proteins led us to examine the role of N45 in the switch I region. An asparagine at this position is conserved in four of the deviant Walker A motif subfamilies (MinD, chromosomal ParAs, Get3 and FleN) and we find that N45 in MinD is essential for MinE-stimulated ATPase activity and suggest that it is a key residue affected by MinE binding.  相似文献   

5.
Min proteins are involved in the correct placement of division septa in many bacterial species. In Escherichia coli (Ec) cells, these proteins oscillate from pole to pole, ostensibly to prevent unwanted polar septation. Here, we show that Min proteins from the coccus Neisseria gonorrhoeae (Ng) also oscillate in E. coli. Green fluorescent protein (GFP) fusions to gonococcal MinD and MinE localized dynamically in different E. coli backgrounds. GFP-MinDNg moved from pole to pole in rod-shaped E. coli cells with a 70 +/- 25 s localization cycle when MinENg was expressed in cis. The oscillation time of GFP-MinDNg was reduced when wild-type MinENg was replaced with MinENg carrying a R30D mutation, but lengthened by 15 s when activated by MinEEc. Several mutations in the N-terminal domain of MinDNg, including K16Q and 4- and 19-amino acid truncations, prevented oscillation; these MinDNg mutants showed decreased or lost interaction with themselves and MinENg. Like MinEEc-GFP, MinENg-GFP formed MinE rings and oscillated in E. coli cells when MinDEc was expressed in cis. Finally, in round E. coli cells, GFP-MinDNg appeared to move in a plane parallel to completed septa. This pattern of movement is predicted to be similar in gonococcal cells, which also divide in alternating perpendicular planes.  相似文献   

6.
The pole-to-pole oscillation of the Min proteins in Escherichia coli results in the inhibition of aberrant polar division, thus facilitating placement of the division septum at the midcell. MinE of the Min system forms a ring-like structure that plays a critical role in triggering the oscillation cycle. However, the mechanism underlying the formation of the MinE ring remains unclear. This study demonstrates that MinE self-assembles into fibrillar structures on the supported lipid bilayer. The MinD-interacting domain of MinE shows amyloidogenic properties, providing a possible mechanism for self-assembly of MinE. Supporting the idea, mutations in residues Ile-24 and Ile-25 of the MinD-interacting domain affect fibril formation, membrane binding ability of MinE and MinD, and subcellular localization of three Min proteins. Additional mutations in residues Ile-72 and Ile-74 suggest a role of the C-terminal domain of MinE in regulating the folding propensity of the MinD-interacting domain for different molecular interactions. The study suggests a self-assembly mechanism that may underlie the ring-like structure formed by MinE-GFP observed in vivo.  相似文献   

7.
In Escherichia coli, the min system prevents division away from midcell through topological regulation of MinC, an inhibitor of Z-ring formation. The topological regulation involves oscillation of MinC between the poles of the cell under the direction of the MinDE oscillator. Since the mechanism of MinC involvement in the oscillation is unknown, we investigated the interaction of MinC with the other Min proteins. We observed that MinD dimerized in the presence of ATP and interacted with MinC. In the presence of a phospholipid bilayer, MinD bound to the bilayer and recruited MinC in an ATP-dependent manner. Addition of MinE to the MinCD-bilayer complex resulted in release of both MinC and MinD. The release of MinC did not require ATP hydrolysis, indicating that MinE could displace MinC from the MinD-bilayer complex. In contrast, MinC was unable to displace MinE bound to the MinD-bilayer complex. These results suggest that MinE induces a conformational change in MinD bound to the bilayer that results in the release of MinC. Also, it is argued that binding of MinD to the membrane activates MinC.  相似文献   

8.
Margolin W 《Current biology : CB》2001,11(10):R395-R398
Placement of the division site in Escherichia coli is determined in part by three Min proteins. Recent studies have shown that MinE, previously thought to form a static ring near the division site at the midcell position, actually joins MinC and MinD in their rapid oscillation between the cell poles.  相似文献   

9.
Placement of the Z ring at midcell in Escherichia coli is assured by the action of the min system, which blocks usage of potential division sites that exist at the cell poles. This activity of min is achieved through the action of an inhibitor of division, MinC, that is activated by MinD and topologically regulated by MinE. In this study, we have used a functional GFP-MinC fusion to monitor the location of MinC. We find that GFP-MinC is a cytoplasmic protein in the absence of the other Min proteins. The addition of MinD, a peripheral membrane protein that interacts with MinC, results in GFP-MinC appearing on the membrane. In the presence of both MinD and MinE, GFP-MinC oscillates rapidly between the halves of the cell. Thus, MinC is positioned by the other Min products, but in a dynamic manner so that it is in position to inhibit Z ring assembly away from midcell.  相似文献   

10.
Membrane topology of the Escherichia coli ExbD protein.   总被引:9,自引:3,他引:6       下载免费PDF全文
The ExbD protein is involved in the energy-coupled transport of ferric siderophores, vitamin B12, and B-group colicins across the outer membrane of Escherichia coli. In order to study ExbD membrane topology, ExbD-beta-lactamase fusion proteins were constructed. Cells expressing beta-lactamase fusions to residues 53, 57, 70, 76, 78, 80, 92, 121, and 134 of ExbD displayed high levels of ampicillin resistance, whereas fusions to residues 9 and 19 conferred no ampicillin resistance. It is concluded that the only hydrophobic segment of ExbD, encompassing residues 23 to 43, forms a transmembrane domain and that residues 1 to 22 are located in the cytoplasm and residues 44 to 141 are located in the periplasm.  相似文献   

11.
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli . We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gels. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE22–88 fragment forms hetero-oligomers with MinE+ when the proteins are co-expressed. In contrast, the MinE36–88 fragment does not form MinE+/MinE36–88 hetero-oligomers, although MinE36–88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE+ in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of minicelling by expression of MinE36–88 in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE36–88 and the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.  相似文献   

12.
The MinD ATPase is critical to the oscillation of the Min proteins, which limits formation of the Z ring to midcell. In the presence of ATP, MinD binds to the membrane and recruits MinC, forming a complex that can destabilize the cytokinetic Z ring. MinE, which is also recruited to the membrane by MinD, displaces MinC and stimulates the MinD ATPase, resulting in the oscillation of the Min proteins. In this study we have investigated the role of lysine 11, present in the deviant Walker A motif of MinD, and the three residues in helix 7 (E146, S148, and D152) that interact electrostatically with lysine 11. Lysine 11 is required for interaction of MinD with the membrane, MinC, MinE, and itself. In contrast, the three residues in helix 7 that interact with lysine 11 are not required for binding to the membrane or activation of MinC. They are also not required for MinE binding; however, they are required for MinE to stimulate the MinD ATPase. Interestingly, the D152A mutant self-interacts, binds to the membrane, and recruits MinC and MinE in the presence of ADP as well as ATP. This mutant provides evidence that dimerization of MinD is sufficient for MinD to bind the membrane and recruit its partners.  相似文献   

13.
14.
The MinC protein directs placement of the division septum to the middle of Escherichia coli cells by blocking assembly of the division apparatus at other sites. MinD and MinE regulate MinC activity by modulating its cellular location in a unique fashion. MinD recruits MinC to the membrane, and MinE induces MinC/MinD to oscillate rapidly between the membrane of opposite cell halves. Using fixed cells, we previously found that a MinE-green fluorescent protein fusion accumulated in an annular structure at or near the midcell, as well as along the membrane on only one side of the ring. Here we show that in living cells, MinE undergoes a rapid localization cycle that appears coupled to MinD oscillation. The results show that MinE is not a fixed marker for septal ring assembly. Rather, they support a model in which MinE stimulates the removal of MinD from the membrane in a wave-like fashion. These waves run from a midcell position towards the poles in an alternating sequence such that the time-averaged concentration of division inhibitor is lowest at midcell.  相似文献   

15.
Membrane topology of penicillin-binding protein 3 of Escherichia coli   总被引:12,自引:4,他引:8  
The beta-lactamase fusion vector, pJBS633, has been used to analyse the organization of penicillin-binding protein 3 (PBP3) in the cytoplasmic membrane of Escherichia coli. The fusion junctions in 84 in-frame fusions of the coding region of mature TEM beta-lactamase to random positions within the PBP3 gene were determined. Fusions of beta-lactamase to 61 different positions in PBP3 were obtained. Fusions to positions within the first 31 residues of PBP3 resulted in enzymatically active fusion proteins which could not protect single cells of E. coli from killing by ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were not translocated to the periplasm. However, all fusions that contained greater than or equal to 36 residues of PBP3 provided single cells of E. coli with substantial levels of resistance to ampicillin, indicating that the beta-lactamase moieties of these fusion proteins were translocated to the periplasm. PBP3 therefore appeared to have a simple membrane topology with residues 36 to the carboxy-terminus exposed on the periplasmic side of the cytoplasmic membrane. This topology was confirmed by showing that PBP3 was protected from proteolytic digestion at the cytoplasmic side of the inner membrane but was completely digested by proteolytic attack from the periplasmic side. PBP3 was only inserted in the cytoplasmic membrane at its amino terminus since replacement of its putative lipoprotein signal peptide with a normal signal peptide resulted in a water-soluble, periplasmic form of the enzyme. The periplasmic form of PBP3 retained its penicillin-binding activity and appeared to be truly water-soluble since it fractionated, in the absence of detergents, with the expected molecular weight on Sephadex G-100 and was not retarded by hydrophobic interaction chromatography on Phenyl-Superose.  相似文献   

16.
Halatek J  Frey E 《Cell reports》2012,1(6):741-752
Min-protein oscillations in Escherichia coli are characterized by the remarkable robustness with which spatial patterns dynamically adapt to variations of cell geometry. Moreover, adaption, and therefore proper cell division, is independent of temperature. These observations raise fundamental questions about the mechanisms establishing robust Min oscillations, and about the role of spatial cues, as they are at odds with present models. Here, we introduce a robust model based on experimental data, consistently explaining the mechanisms underlying pole-to-pole, striped, and circular patterns, as well as the observed temperature dependence of the oscillation period. Contrary to prior conjectures, the model predicts that MinD and cardiolipin domains are not colocalized. The transient sequestration of MinE and highly canalized transfer of MinD between polar zones are the key mechanisms underlying oscillations. MinD channeling enhances midcell localization and facilitates stripe formation, revealing the potential optimization process from which robust Min-oscillations originally arose.  相似文献   

17.
Dorazi R  Dewar SJ 《FEBS letters》2000,478(1-2):13-18
The Escherichia coli FtsK protein targets the septum, is essential for cell division and may play a role in DNA partitioning. Computer modelling suggests that the first 180 amino acids of the protein are embedded in the cytoplasmic membrane by up to six transmembrane domains. We demonstrate, using gene fusions, that the N-terminus contains four transmembrane helices that link two periplasmic domains. The first periplasmic domain contains an HEXXH amino acid sequence characteristic of zinc metalloproteases. We show by mutation analysis that the conserved glutamic acid of the HEXXH sequence is essential for FtsK function during septation.  相似文献   

18.
The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that is mediated by the MinC, MinD and MinE proteins. During the normal division cycle MinD plays two roles. It activates the MinC-dependent mechanism that is responsible for the inactivation of potential division sites and it also renders the division inhibition system sensitive to the topological specificity factor MinE. MinE suppresses the division block at the normal division site at mid-cell but not all cell poles, thereby ensuring the normal division pattern. In this study the MinD protein was purified to homogeneity and shown to bind ATP and to have ATPase activity. When the putative ATP binding domain of MinD was altered by site-directed mutagenesis, the mutant protein was no longer able to activate the MinC-dependent division inhibition system. Immunoelectron microscopy showed that MinD was located in the inner membrane region of the cell envelope. These results show that MinD is a membrane ATPase and suggest that the ATPase activity plays an essential role in the functions of the MinD protein during the normal division process.  相似文献   

19.
We previously presented evidence that replicating but unsegregated nucleoids, along with the Min system, act as topological inhibitors to restrict assembly of the FtsZ ring (Z ring) to discrete sites in the cell. To test if nonreplicating nucleoids have similar exclusion effects, we examined Z rings in dnaA (temperature sensitive) mutants. Z rings were excluded from centrally localized nucleoids and were often observed at nucleoid edges. Cells with nonreplicating nucleoids formed filaments, some of which contained large nucleoid-free areas in which Z rings were positioned at regular intervals. Because MinE may protect FtsZ from the action of the MinC inhibitor in these nucleoid-free zones, we examined the localization of a MinE-green fluorescent protein (GFP) fusion with respect to Z rings and nucleoids. Like Z rings, MinE-GFP appeared to localize independently of nucleoid position, forming rings at regular intervals in nucleoid-free regions. Unlike FtsZ, however, MinE-GFP often localized on top of nucleoids, replicating or not, suggesting that MinE is relatively insensitive to the nucleoid inhibition effect. These data suggest that both replicating and nonreplicating nucleoids are capable of topologically excluding Z rings but not MinE.  相似文献   

20.
Z Hu  J Lutkenhaus 《Molecular cell》2001,7(6):1337-1343
Topological regulation of cell division in E. coli requires positioning a cell division inhibitor, MinC, at the poles of the cell, thus restricting the potential for division to midcell. This positioning is achieved through a rapid oscillation of MinC from pole to pole, a process requiring MinD and MinE. However, the mechanistic basis for this oscillation is not known. Here we report that MinE stimulates MinD ATPase activity, but only in the presence of phospholipid vesicles. Analysis of MinE mutants demonstrates that this stimulation is required for MinD oscillation and suggests that the level of stimulation determines the period of the oscillation. A model is presented in which the requirements for the MinD ATPase contribute spatial and temporal inputs that provide the mechanistic basis for the oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号