首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic metabolism of carbon in fully deuteratedcells of Chlorella ellipsoidea C-27 (D-Chlorella), obtainedby culture in medium prepared with 100 mol% D2O, was characterizedby examining the activities of several enzymes and the levelsof metabolic regulators in a comparison with those of ordinarycells (H-Chlorella). The cellular content of starch in D-Chlorellawas more than twice that in H-Chlorella, whereas those of sucroseand glucose were significantly lower in D-Chlorella. Deuterationof Chlorella caused marked alterations in the activities ofenzymes involved in starch metabolism. There was a significantdecrease in the activity of phosphorylase, a catabolic enzyme,and a significant increase in the activity of starch synthase,an anabolic enzyme. These alterations are probably responsiblefor the increase in the amount of starch in cells. By contrast,no marked changes were observed in the activities of enzymesand the levels of metabolic inhibitors that are involved inthe synthesis of sucrose. It seems likely, therefore, that thedecrease in the amount of sucrose in D-Chlorella was causedmainly by a deficiency in sources of carbon in the cytoplasm,as a consequence of an increase in levels of starch in chloroplasts. (Received May 13, 1992; Accepted December 1, 1992)  相似文献   

2.
The effect of cyanide on ammonia and urea metabolism was studiedwith intact cells of Chlorella ellipsoidea Gerneck, a greenalga which apparently lacks urease. Ammonia uptake was inhibited more readily by cyanide than wasurea uptake. Urea uptake was stimulated by lower concentrationsof cyanide. The addition of cyanide caused the formation ofammonia from some cellular nitrogenous compounds. In the presenceof exogenously added urea, the molar ratio of ammonia accumulatedin the medium to urea taken up exceeded 2.0 as the cyanide concentrationincreased. However, the molar ratio of ammonia actually producedfrom urea nitrogen to urea taken up was less than 1.35 at anyconcentration of cyanide tested. In the presence of higher concentrationsof cyanide, the rate of incorporation of 15N into amino acidsfrom 15N-urea was higher than that from 15N-ammonium sulfate. The results suggest that Chlorella ellipsoidea possesses a pathwaythrough which urea nitrogen is assimilated directly withouta preliminary breakdown to ammonia. (Received October 18, 1976; )  相似文献   

3.
  • 1) Suspensions of Chlorella show an even stronger light scattering than suspensions of chloroplasts of spinach. The bands of absorption are thus broadened and, at higher concentrations, moved to lower wave-lengths. The intensity of the photosynthesis closely follows the curves of light scattering, a fact partly explaining the high efficiency of green light. Calculated per unit thermoelectrically measured incident energy the action spectrum shows bands at 660–670 nm and c. 500 nm and a comparatively high level of the whole region 500–560 nm.
  • 2) Flash experiments show the existence of a steady state carotene/xanthophyll that is moved to reduction (c/x > 1) in blue and green light and to oxidation (c/x < 1) in red light. All experiments point to the existence of two light reactions, the first one involving excitation of carotenoids, with ferredoxin-TPN as acceptor, the second one involving excitation of chlorophyll, with the cytochrome system of the chloroplasts acting as donors of electrons and thus completing an energy converting circulation between pigments and enzyme systems.
  • 3) The operation of combined light reactions appears also from experiments with simultaneous or succedaneous illumination with monochromatic light of different wave-lengths. Some effects may be explained from separate excitations of carotenoids and chlorophylls, others may depend on still unknown photic reactions.
  • 4) The action spectrum in ultrared shows a positive band at c. 900 nm but no or only very small effects in the region 950–1400 nm. Ultrared radiation has on the other hand an enhancing effect on the light excitation in the visible spectrum. A combination of infrared and visible radiation shows a roughly linear relation between incident energy and photosynthetic effect.
  • 5) All experiments were performed in the region of linear relation between intensity of incident light and O2-production. Induced effects of combined monochromatic regions show a very rapid initial change in the steady states that in one or two minutes simmers down to a balanced state of continued photosynthesis. No change was observed in the total quantity of the pigments.
  相似文献   

4.
Chlorella vulgaris grown at 5[deg]C/150 [mu]mol m-2 s-1 mimics cells grown under high irradiance (27[deg]C/2200 [mu]mol m-2 s-1). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feed-back mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6-phosphate and sucrose/starch indicated that cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6- bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feed-back on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed.  相似文献   

5.
24-Dihydrolanosterol-[2-3H] was converted to cholesterol in Chlorella ellipsoidea but ergost-5-enol, poriferasterol, clionasterol were not labelled. The absence of the necessary 24(25) double bond precursor eliminates the possibility of C28 and C29 sterol synthesis. However, it was confirmed that 24-dihydrolanosterol was metabolized by Ochromonas malhamensis to give cholesterol, brassicasterol, and poriferasterol.  相似文献   

6.
Cells of Chlorella ellipsoidea Gerneck (IAM C-27) were synchronouslygrown under a 28-hr light-14-hr dark regime at 25°C. Thealgal cells at different stages during the cell cycle were hardenedat 3°C for 48 hr. The survival rate of hardened cells wasmaximum (70%) at the L2 stage(ripening phase) in the life cycle.The average cell volume of L2 cells increased during hardening,but the process of nuclear division scarcely advanced. The hardinessof L2 cells increasedwith prolongation of hardening time upto 48 hr. Their viability decreased upon increasing the ratof cooling and lowering the final freezing temperature. Butthe hardened cells, which had been prefrozen stepwise, showeda survival rate above 50% even at –196°C when thawedrapidlyin a bath at 25°C. Although L2 cells were somewhathardened in the dark, illumination was the more effective whenused with bubbling gas. Under illumination, bubbling of 1% CO2-airincreased the hardiness more than CO2-free air, but in the dark,this relation was reversed. The hardiness was lowest with nitrogengas bubbling under both conditions. (Received December 3, 1975; )  相似文献   

7.
Abstract

Activation and deactivation of the chick thymus glucocorticoid receptor protein was studied in ordinary and heavy water by DNA-cellulose binding of the tritiated triamcinolone acetonide-receptor complex. Activation was significantly slower in heavy water if it was promoted by incubation at elevated temperature in buffers of low ionic strength. In the presence of 300 mM KC1 or after separation from the low molecular weight cytosol constituents, the complex was activated at the same rate in both solvents. Deactivation (time dependent loss of DNA-binding capacity) was much faster in ordinary than in heavy water regardless of gel filtration or the presence of KC1. A model of receptor activation-deactivation was constructed on the basis of these data that accounts for the observed kinetic deuterium isotope effects and reveals some submolecular details of the process.  相似文献   

8.

Purpose

Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions.

Basic Procedures

Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain.

Main Findings

A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction.

Principal Conclusions

According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress.  相似文献   

9.
The sterol composition of C. ellipsoidea was markedly changed when this alga was grown in the presence of 1 μg/g triparanol. Triparanol appears to inhibit the removal of 14α-methyl group, the second alkylation at C-24, Δ7-reductase, and Δ8 → Δ7-isomerase. The effect of triparanol in Chlorella is much more diversified than the specific effect originally assigned to it in animals.  相似文献   

10.
Rotatore C  Colman B 《Plant physiology》1990,93(4):1597-1600
Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3 indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope.  相似文献   

11.
12.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

13.
Superoxide dismutase and chilling injury in Chlorella ellipsoidea   总被引:7,自引:0,他引:7  
The relationship between superoxide dismutase (SOD) and chilling injury was examined in chilling-sensitive and chilling-resistant strains of Chlorella ellipsoidea. The sensitive strain contained less SOD than the resistant strain. Moreover, all of the SOD in the sensitive strain was the H2O2-sensitive, iron-containing SOD, whereas most of the SOD in the resistant strain was the H2O2-resistant, manganese-containing SOD. Illumination further enhanced the disparity in SOD content between the sensitive and resistant strains since the SOD in the former declined during illumination, whereas the SOD in the latter strain did not. It was possible to elevate the SOD content of the sensitive strain and to increase the proportion of MnSOD by prior growth in the presence of 50 microM paraquat. The SOD content of the cultures after 5 h of illumination at 4 degrees C fell in the order sensitive strain less than paraquat-induced sensitive strain less than resistant strain. The resistance of these cultures to chilling injury was related to SOD content. This was the case whether resistance was assessed in terms of growth rate after chilling, bleaching of chlorophyll during chilling, or loss of viability during chilling. It thus appears likely that O2- is an agent of chilling injury.  相似文献   

14.
15.
A circular DNA molecule was isolated from chloroplasts of Chorella ellipsoidea. The DNA had a buoyant density of 1.695 grams per cubic centimeter (36% GC) and a contour length of 56 micrometers (175 kilobase pairs). The restriction endonuclease analysis gave the same size. Agarose gel electrophoretic patterns of chloroplast DNA digested by several restriction endonucleases were also presented. The digestion by the restriction enzymes, HpaII, MspI, SmaI, and XmaI revealed no appreciable methylation at CG sites in chloroplast DNA.  相似文献   

16.
Methionine sulfoximine (MSO) greatly reduced the carbon dioxideexchange rate (CER) of detached wheat (Triticum aestivvm L.cv Roland) leaves in 21% O2, but only slightly reduced it in2% O2. A supply of 50 mM NH4Cl had little effect on the CERirrespective of the O2 concentration. A simultaneous additionof glutamine and MSO protected against the inhibition of photosynthesisto a considerable extent and caused the accumulation of moreNH3 than did the addition of MSO alone. Fixation of 14CO2 in wheat leaves was inhibited by MSO treatmentin 22% O2, and there was decreased incorporation of 14G intoamino acids and sugars and increased label into acid fractions.The addition of MSO and glutamine together eliminated the effectof MSO on the photosynthetic 14CO2 fixation pattern. NH4Cl stimulatedthe synthesis of amino acids from 14CO2, especially the synthesisof serine in 22% O2. Our observations show that factors other than the uncouplingof photophosphorylation by accumulated NH3 may be responsiblefor the early stage of photosynthesis inhibition by MSO underphotorespiratory conditions. 1Present address: Department of Agricultural Chemistry, KyushuUniversity, Fukuoka 812 Japan. 2Also at U.S. Department of Agriculture, Agricultural ResearchService, Urbana, Illionois 61801, U.S.A. (Received September 13, 1983; Accepted February 2, 1984)  相似文献   

17.
A rapid induction of sulfate transport was observed in the greenalga Chlorella ellipsoidea during sulfur-limited growth. Bothaffinity and Vmax increased about five-fold within 6 h of transferringcells from Bold's basal medium with 350 µM MgSO4 to sulfur-deficientBold's medium. High affinity sulfate transport was induced within15 min and reached maximum rate within 3 h of transferring cellsto sulfur-deficient condition, indicating that a new, high-affinity-sulfatetransport system is induced by sulfur starvation in C. ellipsoidea.Eadie-Hofstee plots of initial rates of sulfate uptake indicatedthat the K of sulfur-starved cells was about 17 µM. Bothsulfur-starved and unstarved cells grown in air had a Vmax of1.5 times higher than that of high-CO2 grown cells. Sulfatetransport was completely inhibited by 30 µM CCCP or 800µMKCN both in the light and the dark but transport in the lightwas not inhibited by 20 µM DCMU. Treatment with 50 µMor 500 µM vanadate caused 50% inhibition of uptake. Therate of sulfate uptake in the dark was twice that in the lightand was stimulated by low pH. These results suggest that thesulfate transport system in C. ellipsoidea is operated by protonsymport across the plasmamembrane which is partially mediatedby P-type ATPase and that these systems depend exclusively onenergy derived from oxidative phosphorylation in the mitochondria. (Received June 28, 1995; Accepted August 8, 1995)  相似文献   

18.
A low-temperature sensitive strain, Chlorella ellipsoidea Gerneck(IAM C-102), lost its chilling sensitivity during preservation.Cells of the original strain (low-temperature sensitive) andthe variant (low-temperature resistant) were both synchronouslygrown under a 14-hr light-10-hr dark regime. In the originalstrain, cells at the D-L stage (transient phase) were most sensitiveto a low temperature, whereas the variant cells were not damagedat any stage. During low-temperature treatment, the viability of D-L cellsin the sensitive strain decreased after a lag period of 1 hr.The O2-uptake activity (respiration) showed the same behavioras the viability, whereas the O2-evolution activity (photosynthesis)decreased from the start of chilling. In the resistant strain,only O2 evolution decreased. The decreased activity was restoredwhen the chilled cells were incubated at 25°C. This restorationwas inhibited by oligomycin. Lowering the light intensity or eliminating O2 diminished thechilling injury of the sensitive strain. The results indicatethat the chilling injury of Chlorella results from the combinedeffects of low temperature, light and O2. (Received September 26, 1980; Accepted March 23, 1981)  相似文献   

19.
The carbon metabolism in cell walls of Chlorella ellipsoideawas studied by following 14C incorporation into cell wall constituentsin photosynthesizing, synchronously growing cells. The rateof incorporation was higher at an early growth phase of thecell cycle. The 14C was incorporated into both the major cellwall constituents, hemicellulose and ‘rigid wall’,and the radioactivity in the latter was distributed into itstwo components, glucosamine and amino acids. In pulse-chaseexperiments, the 14C fixed photosynthetically in the precedingcell cycle was rapidly transferred into the cell wall constituentsat the early growth phase of the ongoing cell cycle, and thereafterwas gradually released from the cell walls, although the totalamount of 14C in the cells remained constant. It was concludedthat the cell wall constituents are turned over during the growthphase of the algal cell cycle, and that the cell wall metabolismin the ongoing cell cycle is closely connected with the carbonmetabolism in the preceding cell cycle. (Received February 3, 1982; Accepted June 21, 1982)  相似文献   

20.
The relationship between the CO2 accumulating mechanism andcarbon isotope discrimination has been investigated in the unicellulargreen alga Chlorella emersonii. Growth of Chlorella at highC02 levels (5%) which repress the activity of the CO2 accumulatingmechanism results in more negative 13C values. The data presentedin this paper suggest that it is possible to induce the accumulatingmechanism by nitrogen limitation as well as by carbon limitation.Activity of the accumulating mechanism, irrespective of whetherit is induced by C or by N limitation, is accompanied by 13Cvalues considerably less negative than those of cells whichdo not possess such a mechanism. It is suggested that the CO2accumulating mechanism results in essentially a closed systemin which the inherent isotope discrimination by RuBP carboxylaseis not expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号