首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In silico docking of a chemical library with the ligand-binding domain of thyroid hormone nuclear receptor-beta (TRbeta) suggested that farnesyl pyrophosphate (FPP), a key intermediate in cholesterol synthesis and protein farnesylation, might function as an agonist. Surprisingly, addition of FPP to cells activated TR as well as the classical steroid hormone receptors but not peroxisome proliferative-activating receptors, farnesoid X receptor, liver X receptor, or several orphan nuclear receptors the ligands of which are unknown. FPP enhanced receptor-coactivator binding in vitro and in vivo, and elevation of FPP levels in cells by squalene synthetase or farnesyl transferase inhibitors leads to activation. The FPP effect was blocked by selective receptor antagonists, and in silico docking with 143 nuclear receptor ligand-binding domain structures revealed that FPP only docked with the agonist conformation of those receptors activated by FPP. Our results suggest that certain nuclear receptors maintain a common structural feature that may reflect an action of FPP on an ancient nuclear receptor or that FPP could function as a ligand for one of the many orphan nuclear receptors the ligands of which have not yet been identified. This finding also has potential interesting implications that may, in part, explain the pleotropic effects of statins as well as certain actions of farnesylation inhibitors in cells.  相似文献   

2.
Rat liver nuclear thyroid hormone receptor was purified to 700-1600 pmol T3 binding capacity/mg protein by sequentially using hydroxylapatite column, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column, DEAE-Sephadex A-50 column, and heparin-Sepharose column. Serum from a mouse immunized using this purified receptor preparation caused a shift of [125I]T3-receptor peak on glycerol density gradient sedimentation from 3.4 S to approximately 7 S. [125I]T3-receptor complex was immunoprecipitated using this serum and goat anti-mouse IgG. The serum showed reduced ability to immunoprecipitate the globular T3 binding fragment with Stokes radius of 22 A produced by trypsin digestion, a receptor fragment which has core histone and hormone binding but not DNA binding activity. These data indicate the production of anti-nuclear thyroid hormone receptor antibody which mainly recognized epitopes unrelated to hormone and core histone binding domain.  相似文献   

3.
4.
5.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

6.
I have measured the interaction of T3 with highly soluble, expanded, rat liver chromatin using a new assay for the study of hormone binding to nucleoprotein. Bound hormone and free hormone were rapidly and quantitatively separated by the adsorption of the hormone-nucleoprotein complex onto hydroxylapatite. This procedure satisfies several criteria for a successful binding assay: (1) The binding capacity is stable throughout the time required to reach equilibrium, (2) the ratio of specific to nonspecific binding (signal/noise) is at least 20:1, (3) large numbers of samples can be handled easily, (4) the amount of bound hormone is directly proportional to the quantity of chromatin employed, (5) the hormone and its analogs display a range of affinities for the binding site, and (6) the binding occurs to a limited number of sites, over a free hormone concentration range which is similar to the hormone concentrations found in vivo.  相似文献   

7.
8.
9.
10.
We have examined the binding of nuclear proteins and recombinant thyroid hormone receptors (TRs) to the palindromic thyroid hormone responsive element AGGTCATGACCT (TREp) using a gel electrophoretic mobility shift assay. Four specific protein-DNA complexes were detected after incubation of nuclear extracts (NE) from T3-responsive pituitary (GH3) cells with a TREp-containing DNA fragment. This was compared with the TREp binding of reticulocyte lysate-synthesized TRs. TR alpha 1 and TR beta 2 each formed a single major TR:TREp complex which comigrated with the least retarded complex formed by GH3 NE, while TR beta 1 formed multiple complexes suggesting that it can bind to TREp as an oligomer. Interestingly, coincubation of 35S-TR alpha 1, GH3 NE, and unlabeled TREp resulted in not only the 35S-TR:TREp complex, but in two additional more greatly retarded complexes containing 35S-TR alpha 1 and comigrating with those formed by GH3 extract alone. Incubation of each of the TRs with NE from COS-7 cells, which do not possess sufficient endogenous TRs to mediate T3-responses, resulted in formation of a new, more greatly shifted complex. A similar, heat labile activity which altered mobility of the TR:TRE complex was also present in NE from T3-unresponsive JEG-3 cells. At high concentration of NE, all of the TR bound to TREp was more greatly retarded than in the absence of NE. Truncation of TR alpha 1 at amino acid 210 prevented additional complex formation in the presence of NE without affecting DNA binding, suggesting that the carboxyl-terminus of the TRs is essential for interaction with nuclear proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号