首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
<正>炭疽是一种人兽共患的急性传染病,羊、牛、马等家畜易患本病,人由于接触炭疽病畜或屠宰、剥食而受染。炭疽的病原体是炭疽杆菌,是一种需氧芽胞杆菌。炭疽菌的毒力除决定于染色体基因外,还与两个编码质粒致病因子有关:一个是荚膜质粒(编码pxo2),主要是聚—D—谷氨酸,在体内能抑制细胞的吞噬作用,在体外能阻断菌体胞壁上的噬菌体受体,故常称为侵袭因子,有助于病菌在体内繁殖扩散和建立感染;另一个是炭疽毒素质粒(编码pxo1),由致死因子(LF)、水肿因子(EF)和保护性抗原(PA)三种成分组成。三种成分单独注射动物未证明有毒素活性,但若将LF加PA静脉注射可致死小白鼠、大白鼠和豚鼠。EF加PA皮内注射可引起豚鼠和家兔皮肤水肿。三种毒素成分的分子量在80~90KDa之间,可能PA结合  相似文献   

2.
利用基因重组技术获取炭疽杆菌保护性抗原(PA)。将炭疽杆菌保护性抗原编码基因pag与pET载体连接构建重组质粒,转化大肠杆菌DE3株,诱导表达炭疽杆菌保护性抗原,并经亲和层析及凝胶过滤纯化此抗原。实验成功构建了表达炭疽杆菌保护性抗原的重组菌株,纯化后PA纯度达90%,且经检测纯化产物具有天然PA的生物学活性。同时表明从大肠杆菌中纯化PA较以往从炭疽杆菌中获取PA简便易行。  相似文献   

3.
炭疽毒素及其细胞受体的研究进展   总被引:1,自引:0,他引:1  
炭疽毒素由 3种蛋白组成 :保护性抗原 (protectiveantigen ,PA)、致死因子 (lethalfactor,LF)和水肿因子 (edemafactor ,EF) .综述炭疽毒素研究的最新进展 .主要介绍炭疽毒素的关键致病因子———LF的结构与功能 ,炭疽毒素膜转运成分PA的结构及其受体 (anthraxtoxinreceptor ,ATR)和其cDNA克隆的结构 ,并讨论了在炭疽的治疗、预防和毒素在肿瘤治疗中的可能应用 .  相似文献   

4.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

5.
<正>以往的研究致力于开发更安全、有效的人用炭疽菌苗,已经证明无论化学菌苗或活菌苗必须含有一种或几种毒素成份方可保护活芽胞攻击。我们近期的研究致力于∶畜苗炭疽杆菌Sterne株Aro_突变株,产保护性抗原(PA)的重组活菌苗,和含PA,PA片段和新佐剂配方的非活菌苗。 炭疽杆菌Aro—1和Aro—2 用四环素抗性转座子Tn916致突变,使炭疽杆菌链霉素抗体、产毒素、无荚膜株UM23—1产生两个独立的Aro~-突变株,此二株Aro~-突变株的生长需要几种芳香族复合物,命名为Aro—1、Aro~-—2,它们对小鼠和豚鼠比UM23—1株毒力弱,但用其免疫小鼠和豚鼠,对强毒炭疽杆菌芽胞致死量非肠道攻击提供明显保护。当体外无四环素培养时,两种Aro~-突变株回变到亲本表型。  相似文献   

6.
炭疽毒素的细胞受体   总被引:1,自引:0,他引:1  
炭疽杆菌外毒素是三组分蛋白质,构成两种毒素。水肿因子(EF)和致死因子(LF)分别是腺苷环化酶和金属蛋白酶,保护性抗原(PA)与细胞表面受体结合并将水肿因子或致死因子转移进细胞内发挥毒性作用。在哺乳动物细胞上己发现有两种受体,分别是肿瘤内皮标志8基因编码的细胞表面蛋白ATR/TEM8和毛细血管形态发生基因2编码的细胞表面蛋白CMG2。这两种受体蛋白的生理功能都不十分清楚,它们之间的氨基酸序列有很高的同源性(40%~60%)。氨基酸序列主要分信号肽、细胞外主基、跨膜区、脑浆尾四个区,细胞外主基内含von WIlle-brand因子A主基或称整合素插入主基(VWA/I主基),VWA/I主基内有金属离子依赖性粘连位点(MIDAS),是主基与PA蛋白质相互作用所必不可少的。这两种受体都有几种异构体,主要差异在于胞浆尾区的氨基酸长度不同。两种VWA/I主基都有封闭PA功能,阻止细胞中毒的作用,有望作为抗毒素治疗炭疽。  相似文献   

7.
<正>炭疽杆菌的三组分毒素是由三种多肽成份组成的一种复合毒素或毒性物质:水肿因子(EF;因子I)、保护性抗原(PA;因子Ⅱ)和致死因子(LF;因子Ⅲ)。没有  相似文献   

8.
炭疽杆菌的特性和主要毒力因子   总被引:2,自引:0,他引:2  
炭疽是由炭疽杆菌芽胞引起的疾病,炭疽杆菌的主要毒力因子在毒力质粒上编码pXO1和pXO2,pXO1184.5kbp大小,编码分泌外毒素的基因,此二个外毒素为二亚单位毒素,二个A蛋白,致死因子(LF,83kD)和水肿因子(EF,89kD);一个B蛋白,保护因子(PA,85kD);分别由pXO1上的独立基因,Lef,Cya和Pag编码;pXO2为95.3kbp大小的小质粒,携带三个基因,CapB,CapC和CapA,与聚-γ-D谷氨酸构成的荚膜合成有关。  相似文献   

9.
重组炭疽水肿因子的表达与生物活性分析   总被引:1,自引:0,他引:1  
炭疽毒素包括3种蛋白因子,即保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。EF是钙调蛋白依耐的腺苷酸环化酶,可使细胞cAMP浓度升高,导致宿主防御能力下降。为深入研究炭疽毒素的作用机理,构建了原核表达质粒,在大肠杆菌中表达出重组EF(rEF)。经鉴定,rEF以可溶形式表达于细菌胞质中。经过金属螯和层析、阳离子交换层析和凝胶层析,每升诱导培养物可获得约5mg 重组蛋白。用重组蛋白免疫家兔获得了兔多抗,能够在细胞试验中中和rEF,体外细胞试验显示rEF具有很好的生物活性,在J774A.1和CHO细胞试验中,能与LF共同竞争和PA的结合位点,相互抑制。上述工作为深入研究炭疽毒素的作用机理,开发针对EF的毒素抑制剂打下基础  相似文献   

10.
按照炭疽芽孢杆菌保护性抗原(PA)基因成熟肽编码序列设计引物,从炭疽杆菌pOX1质粒中扩增出PA基因片段,将该片段定向插入到原核表达载体pET-28a中,获得了pET-PA原核表达重组质粒,限制性酶切分析和DNA序列测定均证实该克隆插入片段为PA基因的成熟呔编码序列。将该重组质粒转化大肠杆菌BL21(DE3),经IPTG诱导,重组蛋白在大肠杆菌表达系统中获得了高效表达;Western印迹分析表明表达产物具有良好的免疫学活性。  相似文献   

11.
NatureBiotechnology 2 0 0 1年 19卷 10期 95 8~ 96 1页报道 :炭疽毒素是由炭疽杆菌 (Bacillusanthracis)产生的。在临床上 ,炭疽病是罕见的 ,但目前由于在生物战争和恐怖行为中有可能使用炭疽杆菌 ,因而引起科学家对炭疽病的日益增加的关注。如所周知 ,炭疽杆菌毒素是由保护抗原 (PA) ,即单一的受体结合部分 ,以及两种酶促部分 ,即水肿因子(EF)和致死因子 (LF) ,共同组成的。这 3种蛋白作为无毒的单体从炭疽杆菌体内释出后 ,就扩散到哺乳动物细胞表面的受体 ,并组配成为有毒的可结合于宿主细…  相似文献   

12.
目的:探讨炭疽杆菌保护性抗原PA(protective antigen)domain4能否作为炭疽疫苗和炭疽感染时紧急预防用药.方法:构建含有PA domain4和人IgG Fc片段的表达载体,通过免疫大耳白兔获得针对该融合蛋白的免疫血清,通过小鼠巨噬细胞保护试验验证PA domain4-Fc是否具有疫苗和紧急预防用功能.结果:获得了表达PA domain4-Fc融合蛋白的CHO细胞株和针对PA domain4-Fc的兔抗血清,细胞保护试验证实PA domain4-Fc抗血清能够保护小鼠巨噬细胞免受炭疽毒素的攻击,但PA domain4-Fc蛋白本身并不能直接拮抗炭疽毒素对细胞的损害.结论:PA domain4-Fc抗血清可以保护小鼠巨噬细胞免受炭疽毒素损害,表明PA domain4-Fe具有作为炭疽疫苗的可能,但PA domain4-Fc蛋白不能直接竞争性拮抗炭疽毒素损害细胞.  相似文献   

13.
炭疽保护性抗原(PA)是炭疽毒素的重要组分,同时也是现有炭疽疫苗的主要有效成分,在炭疽杆菌的致病与免疫中发挥关键作用。以重组PA为免疫原,采用B淋巴细胞杂交瘤技术,结合炭疽毒素敏感细胞的毒性中和试验,大量筛选抗PA单克隆抗体,获得了9株炭疽毒素中和性单抗。进一步分析表明这些单抗以IgG1亚类为主,分别识别PA 3个结构域的4个不同中和表位区。针对结构域2的4株单抗识别同一表位区,其中3株单抗的中和活性强于抗PA多抗;针对结构域4的4株单抗识别两个不同表位区;另有1株单抗识别位于结构域3的表位。实验结果提示PA具有多个中和表位,分别位于其不同结构域,其中结构域2、4包含主要中和表位。实验中获得的针对不同表位的中和性单抗为深入研究PA的免疫保护机理提供了工具,也为研制针对炭疽毒素的被动免疫制剂和治疗药物打下基础。  相似文献   

14.
目的:通过改造炭疽毒素保护性抗原Protective Antigen (PA)及致死因子Lethal Factor (LF),尝试建立更加广谱的新型炭疽毒素靶向给药系统并对其递送效率进行定量评价.方法:采用基因工程手段,分别构建了3种改构的天然炭疽毒素保护性抗原PA及炭疽毒素的LF N端融合海肾荧光素酶(Luciferase)的LFn-linker-Luc的大肠杆菌重组表达体系.利用CCK-8法评价改构PA和LF共同作用肿瘤细胞后的细胞存活率;利用改构PA和LFn-linker-Luc与肿瘤细胞共孵育,通过测定细胞内荧光素酶活性,评价改构PA靶向肿瘤细胞的效果.结果:体外酶解实验证明构建的改构PA蛋白能够被正确地酶解成目的大小的片段;改构PA和LF共同作用肿瘤细胞能够显著降低细胞存活率;利用LFn-linker-Luc能够评价改构PA的靶向效率,PA蛋白的改构方式与其递送效率相关.结论:设计并改构的炭疽毒素药物递送系统,能够实现特异性靶向肿瘤细胞的效果,并具有更广谱的作用效果,为研制新型广谱抗肿瘤药物提供了新的思路和方法.  相似文献   

15.
对疑似炭疽感染病牛牛肉标本和牛血污染土壤标本进行了病原菌分离,经菌落形态和菌体形态观察、血清学实验和生化鉴定,证明分离到的细菌为炭疽芽孢杆菌。为进一步了解其特性,分别用保护性抗原、水肿因子和荚膜基因特异性引物对2株菌进行PCR扩增。结果显示,这两株菌有两个毒力相关质粒pX01和pX02,为有毒株。序列测定表明,这两株菌基因间同源性达99%,这两株菌与GenBank中炭疽芽孢杆菌A2012株、Ames Ancestor株和A16R疫苗株同源性达99%。  相似文献   

16.
目的:为了实现炭疽杆菌保护性抗原(PA)在乳酸乳球菌中的整合性表达,利用组氨酸合成酶基因(HISB)作为同源交换序列构建表达PA的载体。方法:采用PCR等方法将酸启动子P170、红霉素抗性基因、HISB及酶切位点克隆到pMD18-T载体上,命名为pHEC-P170-PA。结果:构建好的双交换载体经酶切电泳鉴定并测序,其序列中含有PA基因。结论:构建了炭疽杆菌保护性抗原基因同源双交换载体。  相似文献   

17.
人吸入炭疽菌Bacillusanthracis的孢子时 ,炭疽菌便释放 3种蛋白质 ,这 3种蛋白质结合起来形成炭疽毒素 .这 3种蛋白质的组合使血压骤降 ,引起出血 ,并导致昏迷与死亡 .其中 1个蛋白质称为保护性抗原(PA) ,它与细胞表面的 1个受体相结合 ,并由酶将它粘着在结合处 .PA与受体的粘着部分称为PA6 3,它为其他 2个炭疽毒素蛋白提供停靠于细胞的位置 .这 2个炭疽毒素称为致死因子和水肿因子 .炭疽毒素一旦装配好 ,致死因子便得以进入细胞 .在致死因子进入细胞的入口处 ,其割断蛋白质而引起一连串事件的起动 ,这导致产生炭疽…  相似文献   

18.
以炭疽杆菌A16R株基因组DNA为模板,PCR扩增出炭疽杆菌致死因子LF基因。构建pET-28(a)/LF表达质粒,并在大肠杆菌中表达。优化表达条件,可溶性目的蛋白表达量约占细菌可溶性总蛋白的10%,表达产物经疏水层析纯化后,目的蛋白约占90%。免疫双扩散及免疫印迹试验检测结果显示,该表达产物与炭疽杆菌诊断血清有特异性反应,具有抗原性。  相似文献   

19.
炭疽芽胞杆菌引起的炭疽病死亡率非常高 ,当前的疫苗具有效力不稳定、对吸入性炭疽的保护率低、免疫程序繁琐、存在副作用等缺点。近年来人们在改造传统疫苗的同时又有一些新的发现 ,如保护性抗原 (PA)的抗体在体内可杀死芽胞 ;通过粘膜免疫能够诱导机体分泌IgA抗体 ;抗多聚谷氨酸 (γ D PGA)抗体可以同炭疽杆菌的繁殖体作用 ,从而杀死繁殖体 ;寻找到新的免疫原。DNA疫苗、活载体疫苗的出现为新一代安全、免疫程序简单、具更高保护率的疫苗奠定了基础  相似文献   

20.
【目的】本研究旨在建立一种简单快捷的炭疽水肿因子(EF)重组表达及纯化方法。【方法】构建GST-EF融合表达载体,基于EF基因的密码子使用偏好,选择菌株Escherichia coli BL21-Codon Plus(DE3)-RIL为表达宿主,对EF进行诱导表达;细胞透性技术分离粗蛋白,进而利用亲和层析一步法纯化EF;Native-PAGE、竞争性抑制实验及c AMP浓度分析用于鉴定EF的生物活性。【结果】实现了EF可溶性高效表达,透性化处理可有效抽提可溶性重组蛋白;利用亲和层析一步法纯化得到了纯度达96%的EF;EF可与保护性抗原(PA)结合形成水肿毒素,该毒素能够急剧提高CHO-K1细胞中c AMP的浓度。【结论】本研究建立了一种高效快速制备具有生物活性的炭疽水肿因子的方法,为炭疽相关研究工作提供了新的选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号