首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The demyelination of peripheral nerves that results from exposure of developing rats to tellurium is due to inhibition of squalene epoxidase, a step in cholesterol biosynthesis. In sciatic nerve, cholesterol synthesis is greatly depressed, whereas in liver, some compensatory mechanism maintains normal levels of cholesterol synthesis. This tissue specificity was further explored by examining, in various tissues, gene expression and enzyme activity of 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Exposure to tellurium resulted in pronounced increases in both message levels and enzyme activity in liver, the expected result consequent to up-regulation of this enzyme in response to decreasing levels of intracellular sterols. In contrast to liver, levels of mRNA and enzyme activity in sciatic nerve were both decreased during the tellurium-induced demyelinating period. The temporal pattern of changes in 3-hydroxy-3-methylglutaryl-CoA reductase message levels in sciatic nerve seen following exposure to tellurium was similar to the down-regulation seen for mRNA specific for PNS myelin proteins. Possible mechanisms for differential control of cholesterol biosynthesis in sciatic nerve and liver are discussed.  相似文献   

2.
Abstract: Apolipoproteins have been implicated in the salvage and reutilization of myelin cholesterol during Wallerian degeneration and the subsequent nerve regeneration. Current evidence suggests that myelin cholesterol complexes with apolipoproteins E and A-I to form lipoproteins that are taken up via low-density lipoprotein receptors on myelinating Schwann cells. We recently reported, however, that apolipoprotein E is not required for nerve regeneration or reutilization of myelin cholesterol. We have now investigated nerve regeneration and the reutilization of cholesterol in mutant mice deficient in both apolipoproteins E and A-I. Morphologic examination of nerves 4 and 12 weeks after crush injury revealed that regeneration proceeded at a normal rate in the absence of these apolipoproteins. Autoradiography of regenerating nerves indicated that prelabeled myelin lipid was reutilized in the regenerating myelin. 3-Hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, was down-regulated in the regenerating nerves, indicative of cholesterol uptake via lipoproteins. Prelabeled myelin cholesterol was present in lipoprotein fractions isolated from crushed nerves of mutant mice. These data suggest that there is considerable redundancy in the process of cholesterol reutilization within nerve, and that apolipoproteins other than apolipoproteins E and A-I may be involved in the recycling of myelin cholesterol.  相似文献   

3.
Abstract: The discovery of apolipoprotein E synthesis and secretion by injured peripheral nerve led to the hypothesis that endoneurial apolipoprotein E serves to salvage degenerating myelin cholesterol. This salvaged cholesterol could then be reutilized by Schwann cells during remyelination via uptake through low-density lipoprotein receptors. As a test of this hypothesis, we measured the rate of cholesterol synthesis in rat sciatic nerve endoneurium during development and at various times following a crush injury at 50 days of age. In control nerves [14C]acetate incorporation into cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase activity were closely linked throughout development, indicating that reductase activity in nerve, as in other tissues, is a good indicator of cholesterol's synthetic rate. In the crushed nerves cholesterol synthesis fell to nearly zero during the first week after the crush. There was a partial recovery during the second to fourth weeks, but unlike that of other lipids, cholesterol synthesis remained well below control nerve values throughout most of the 15-week post-crush period examined. Thus, cholesterol synthesis is at very low levels during the myelination of regenerating axons. These results are consistent with a receptor-mediated down-regulation of cholesterol synthesis by lipoproteins, and would be expected if Schwann cells were utilizing an external source of cholesterol as postulated above.  相似文献   

4.
5.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA: cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and ‘reactivation’ of enzyme activity. Cytosol caused a 78% increase in acyl-CoA: cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A: cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA: cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500×g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA: cholesterol acyltransferase activity is observed.  相似文献   

6.
In the adrenal gland of the rat, the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-controlling enzyme of cholesterol synthesis, is shown to be regulated by cholesteerol carried in plasma lipoproteins. When plasma cholesterol levels were lowered 90% by administration of the drug 4-aminopyrazolopyrimidine, the cholesteryl ester content of the adrenal gland declined by more than 90% and this was associated with a 150- to 200-fold increase in the activity of adrenal 3-hydroxy-3-methylglutaryl coenzyme A reductase and a 30-fold increase in cholesterol synthesis from [14C]acetate. The subsequent intravenous infusion of cholesterol contained in either rat or human high density or low density lipoproteins restored the adrenal content of cholesteryl esters and reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase to basal levels. The depletion of adrenal cholesteryl esters and the enhancement in the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase that occurred in the 4-aminopyrazolopyrimidine-treated rat required the action of adrenocorticotropic hormone (ACTH) since neither was observed when ACTH secretion was blocked by administration of dexamethasone. The current data indicate that the low rate of cholesterol synthesis normally observed in the rat adrenal gland is due to a suppression of the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase that is mediated by plasma lipoproteins.  相似文献   

7.
A new method suitable for measuring rat liver 3-hydroxy-3-methylglutaryl-CoA reductase activity is described and its advantages over methods previously available are discussed. An accurate time course was measured for the inhibition of liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase activity by dietary cholesterol; this enzyme was affected 1 1/4 h after the rats began to consume a cholesterol-rich diet. In this experiment there was no correlation between concentrations of microsomal cholesterol ester and the activity of 3-hydroxy-3-methylglutary-CoA reductase.  相似文献   

8.
Pregnant rats were given pharmacological doses of cortisol or ACTH or no hormone from gestation day 9 to 19 and maternal and fetal hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and plasma cholesterol studied on gestation day 20. Reductase activity was also studied in the maternal and fetal adrenal of the rats given cortisol or no hormone. Cortisol administration increased the maternal and fetal plasma cholesterol but had no effect on the hepatic active (phosphorylated) 3-hydroxy-3-methylglutaryl-CoA reductase activity when compared to untreated rats. Total (active + inactive) 3-hydroxy-3-methylglutaryl-CoA reductase activity, however, was reduced in maternal liver but not altered in the fetal liver by cortisol. The maternal cortisol treatment decreased the fetal, but not maternal, adrenal 3-hydroxy-3-methylglutaryl-CoA reductase total enzyme activity. The data support a hypothesis that utilization of plasma cholesterol for adrenal steroidogenesis may be an important determinant of plasma cholesterol homeostasis in the rat fetus. Maternal ACTH administration increased the foetal but not maternal plasma cholesterol, whilst active 3-hydroxy-3-methylglutaryl-CoA reductase activity was increased in the pregnant rat but not her fetuses. This result may suggest coordination of hepatic active reductase activity with adrenal cholesterol utilization in the pregnant rat. The reason for the fetal hypercholesterolaemia caused by ACTH, which is not known to cross the placenta, is uncertain. The studies, however, indicate that fetal cholesterol homeostasis and the rate limiting enzyme of cholesterol synthesis is influenced by maternal glucocorticoid administration.  相似文献   

9.
Isolated rat hepatocytes converted mevalonolactone into sterol intermediates and fatty acids 6- to 8-fold faster than mevalonate salt at concentrations less than 6 X 10(-4) M. Incubation of hepatocytes for 3 h normally results in induction of 3-hydroxy-3-methylglutaryl-CoA reductase. This increase in enzyme activity was inhibited by mevalonolactone and by mevalonate salt; at each concentration between 6 X 10(-4) M and 6 X 10(-8) M the lactone was a more effective inhibitor than the salt. The increase in enzyme activity was completely prevented by 6 X 10(-4) M lactone, and at this concentration the cells synthesized from the lactone an amount of sterol per hour which approximated that leavingthe cells in the same period. Administration of mevalonolactone to intact rats resulted in a dose-dependent inhibition of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity. At the highest dose (400 mg of (RS)-mevalonolactone/200 g of rat) enzyme activities declined 85% within 45 min and were still suppressed below normals after 28 h. Mevalonolactone treatment resulted in increases in liver cholesterol content and in the cholesterol ester concentration of liver microsomes. The results demonstrate that the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase can be controlled by the rate of endogenous sterol synthesis both in vitro and in vivo.  相似文献   

10.
Dietary cholesterol lowers the activity of rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase without affecting various other liver microsomal enzymes. This is consistent with a specific regulatory mechanism and distinguishes the action of cholesterol on 3-hydroxy-3-methylglutaryl-CoA reductase from that of at least one other stimulus known to affect this enzyme.  相似文献   

11.
Dietary cholesterol lowers the activity of rat liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase without affecting various other liver microsomal enzymes. This is consistent with a specific regulatory mechanism and distinguishes the action of cholesterol on 3-hydroxy-3-methylglutaryl-CoA reductase from that of at least one other stimulus known to affect this enzyme.  相似文献   

12.
Rat hepatocytes isolated by the procedure described here showed 3-hydroxy-3-methylglutaryl-CoA reductase activity in the range of that reported for rat liver at the maximum of the circadian cycle, even if they were taken from rats at the time of the minimum. The enzyme was present in cells as both its active dephosphorylated (20 +/- 8%) and the inactive phosphorylated forms. The enzyme activity and the ratio between the two forms were unaltered during 3 h of cell incubation. 25-Hydroxycholesterol (50 microM) induced about 50% inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity during 1 h incubation but the relative amount of the two forms was not modified by the sterol. Cells isolated by the described procedure may therefore be a useful tool in studies on the regulation of cholesterol neogenesis, both through the synthesis of the enzyme, which can be shown by measuring the activity after complete dephosphorylation of the enzyme, and via the rapid reversible shift of the inactive to the active form, resulting from the ratio between the two enzyme forms. The latter mechanism for the modulation of cholesterol synthesis cannot be tested in cell cultures because full activation of the enzyme occurs during hepatocyte plating.  相似文献   

13.
The incubation of rat liver microsomal fraction with a serum preparation followed by the re-isolation of the microsomal membranes has resulted in an increase in the concentration of non-esterified cholesterol, a considerable decrease in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase and in an increase in the activity of acyl-CoA–cholesterol acyltransferase in the treated microsomal preparation. These effects were related to the concentration of serum in the incubation mixture and to the duration of the incubation. The transfer of non-esterified cholesterol was specific in that the content of protein and the total phospholipids were similar in the original microsomal fraction and the serum-treated microsomal preparation. The incubation of the microsomal fraction with lipoprotein-deficient serum or with no serum resulted in both cases in small changes in the non-esterified cholesterol, the esterified cholesterol and the total phospholipid content in the treated preparations compared with these concentrations in the original microsomal fraction, whereas the activity of acyl-CoA–cholesterol acyltransferase and of 3-hydroxy-3-methylglutaryl-CoA reductase was similar in the lipoprotein-deficient-serum-treated and the buffer-treated microsomal preparations. The activity of 3-hydroxy-3-methylglutaryl-CoA reductase was lower and the activity of acyl-CoA–cholesterol acyltransferase was higher in the lipoprotein-deficient-serum-treated and the buffer-treated microsomal preparations as compared with these activities in the original microsomal fraction. However, the serum-treated microsomal preparation had considerably lower activity of 3-hydroxy-3-methylglutaryl-CoA reductase and considerably higher activity of acyl-CoA–cholesterol acyltransferase than these activities in buffer-treated and in lipoprotein-deficient-serum-treated microsomal preparations.  相似文献   

14.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A:cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA:cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and 'reactivation' of enzyme activity. Cytosol caused a 78% increase in acyl-CoA:cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A:cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA:cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500 X g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA:cholesterol acyltransferase activity is observed.  相似文献   

15.
The regulation of 3-hydroxy-3-methylglutaryl-CoA reductase was studied in mouse uterine epithelium. The enzyme was rapidly inactivated during incubation with ATP/Mg2+ in vitro, and could be re-activated by incubation with partially purified rat liver phosphoprotein phosphatase. Enzyme activity was rapidly inhibited by mevalonate injection in vivo to approx. 30% of control. The percentage of total enzyme active in vivo was measured by inclusion of NaF in the isolation buffers. The percentage of enzyme active in vivo 18 h after stimulation by oestrogens remained at approx. 25% after inhibition of activity by mevalonate injection, cholesterol feeding or progesterone pretreatment. However, 9 h after oestrogen stimulation, cholesterol feeding inhibited enzyme activity to 57% of control, 94% of which was in the active form. We conclude that, although all components for a reversible phosphorylative regulation of 3-hydroxy-3-methylglutaryl-CoA reductase activity are present in uterine epithelial cells, a role in the rapid changes in epithelial enzyme activity has not been demonstrated.  相似文献   

16.
The rapid accumulation of myelin in the peripheral nervous system during the early postnatal period requires large amounts of cholesterol, a major myelin lipid. All of the cholesterol accumulating in the developing rat sciatic nerve is synthesized locally within the nerve, rather than being derived from the supply in lipoproteins in the systemic circulation (Jurevics and Morell, J. Lipid Res. 5:112–120; 1994). Since this lack of utilization of circulating cholesterol may relate to exclusion by the blood-nerve barrier, we examined the sources of cholesterol needed for regeneration following nerve injury, when the blood-nerve barrier is breached. One sciatic nerve was crushed or transected, and at various times later, the rate of cholesterol accumulation was compared with the rate of local in vivo synthesis of cholesterol within the nerve, utilizing intraperitoneally injected 3H2O as precursor. The accumulation of additional cholesterol in nerve during regeneration and remyelination could all be accounted for by that locally synthesized within the nerve. There was also an increase in cholesterol esters in injured nerve segments; in crushed nerves, these levels decreased during regeneration and remyelination, consistent with reutilization of cholesterol originally salvaged by phagocytic macrophages and Schwann cells. Thus, regeneration and remyelination following injury in sciatic nerve utilizes both salvaged cholesterol and cholesterol synthesized locally within the nerve, but not cholesterol from the circulation.  相似文献   

17.
C-6 glioma cells, grown in medium supplemented with 5% delipidated foetal calf serum, were induced to enter a quiescent state by removing serum from the medium. Within 24h there was a 75–80% decline in the rate of incorporation of [14C]acetate or 3H2O into digitonin-precipitable sterols. Experiments with [3H]mevalonolactone as a labelled sterol precursor suggested that the decline in sterol synthesis was regulated primarily at a point in the pathway before the formation of mevalonate. The specific activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase decreased sharply in conjunction with the decline in sterol synthesis in the serum-free cultures; however, the activity of acetoacetyl-CoA thiolase was altered only slightly. The magnitude of the initial decline in reductase activity was not affected when 50-mm-NaF was included in the preincubation and assay buffers to prevent activation of physiologically inactive enzyme. However, after 6h of serum deprivation the decline in 3-hydroxy-3-methylglutaryl-CoA reductase activity was due to a decrease in the amount of latent activity. The sterol concentration in C-6 cells was unchanged after 24h in serum-free medium, although a 20% decrease in the sterol/fatty acid molar ratio occurred as a result of a small increase in the fatty-acid concentration. Incorporation of 3H2O into fatty acids was inhibited in the serum-deprived glial cells; however, this inhibition developed more slowly and was not as pronounced as the diminution in sterol synthesis. The results suggest that in C-6 glia, which resemble the glial stem cells of the developing brain, the decreased demand for membrane sterols in the quiescent state results in a decline in sterol synthesis, mediated primarily through co-ordinate changes in the activities of 3-hydroxy-3-methylglutaryl-CoA synthase and 3-hydroxy-3-methylglutaryl-CoA reductase.  相似文献   

18.
The crystalloid endoplasmic reticulum (ER) of UT-1 cells is a specialized smooth ER that houses 3-hydroxy-3-methylglutaryl-CoA reductase, a membrane protein that regulates endogenous cholesterol synthesis. The biogenesis of this ER is coupled to the over production of 3-hydroxy-3-methylglutaryl-CoA reductase. To understand better this membrane system and the relationship between the synthesis of a membrane protein and the formation of membrane, we have purified the crystalloid ER. Purified crystalloid ER did not contain significant amounts of membrane derived from the Golgi apparatus, mitochondria, or plasma membrane. Approximately 24% of the protein in this organelle corresponded to 3-hydroxy-3-methylglutaryl-CoA reductase; however, at least eight other proteins were detected by gel electrophoresis. One of these proteins (Mr 73,000) was as abundant as reductase. These results suggest that the biogenesis of this ER involves the coordinate synthesis of multiple membrane and content proteins.  相似文献   

19.
20.
Cholesterol Esterifying Enzyme in Normal and Degenerating Peripheral Nerve   总被引:7,自引:5,他引:2  
Abstract: The cholesterol esterifying enzyme which incorporates exogenous free [1-14C]oleate into cholesteryl ester is present in rat sciatic endoneurium. Cholesterol esterification is optimal at pH 4.8. Exogenous ATP, CoA, and oleyl-CoA do not greatly affect its activity. Various detergents and bile salts are inhibitory. Enzyme activity does not change appreciably during storage at 4°C for up to 4 days or at -70°C for up to 1 month. Of the subcellular fractions, the microsomal fraction exhibits the highest specific activity. Over 75% of enzyme activity is recovered, with equal amounts in the microsomal and soluble fractions. During nerve fiber degeneration an increase (more than fivefold) in cholesterol esterifying activity, which peaks 6 days after crush, is observed. Elevated levels of enzyme activity persist for 90 days after crush, by which time nerve regeneration is well established. Thus, it is concluded that an increase in cholesterol esterifying activity in degenerating nerve is primarily responsible for cholesterol esterification during Wallerian degeneration. The maximum increase in cholesterol esterifying activity is associated temporally with axonal degeneration and, particularly, with the formation of myelin ovoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号