首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary cAMP dependent protein kinase and cAMP independent synthase kinase incorporated up to two Pi/subunit in rabbit skeletal muscle glycogen synthase I. The first Pi/subunit was incorporated much faster than the second. After incorporation of one Pi/subunit by the CAMP dependent protein kinase, the ratio of independence (RI) was 0.20 and the dissociation constant Kc for Glc-6-P was 0.3 mm, and quite different from the RI of 0.02 and Kc (Glc-6-P) of 1 mM, obtained when one Pi/subunit was incorporated by the cAMP independent synthase kinase. Within the first Pi/subunit, the cAMP dependent protein kinase predominantly phosphorylated in the trypsin sensitive region (60–70%), corresponding to two trichloro-acetic acid soluble tryptic phosphopeptides, termed site-1 and site-2. Site-2 was found to be phosphorylated prior to site-1. CNBr degradation resolved the phosphorylated regions in two phosphopeptides with Mr 28,000 and 10,000.The larger CNBr phosphopeptides were derived from the trypsin sensitive region. Within the first Pi/subunit, synthase kinase almost exclusively phosphorylated in the trypsin insensitive region (80%) corresponding to the smaller CNBr phosphopeptide. However, when two Pi/subunit were incorporated by either the cAMP dependent protein kinase or the synthase kinase the phosphates were almost equally distributed between the trypsin sensitive and insensitive regions and Kc (Glc-6-P) increased to 2 mm, Maximum phosphorylation (2.8–3.3 Pi/subunit and Kc (Glc-6-P) 9–11 mm) was only obtainable when both the cAMP dependent protein kinase and the synthase kinase were present.The phosvitin kinase very slowly incorporated one Pi/subunit.We suggest that within the first P1subunit phosphorylation in the trypsin insensitive region determine the affinity for the allosteric activator, glucose-6-phosphate. Thereafter phosphorylation in the trypsin sensitive region is the major determinant. Purified glycogen-free rabbit skeletal muscle glycogen synthase binds glycogen with lower affinity than polymorphonuclear leukocyte glycogen synthase. Glycogen was found to increase the initial rate of phosphorylation and facilitate the phosphorylation of site-1.Abbreviations cAMP adenosine cyclic 3:5-monophosphate - Glc-6-P glucose-6-phosphate - UDP-Glc uridine 5-diphosphoglucose - EGTA ethylene glycol-bis(-aminoethylether)-N,N-tetraacetic acid - EDTA ethylenediamine tetraacetic acid - CNBr cyanogen bromide - DTT dithiothreitol - SDS sodium dodecyl sulphate - RI ratio of independence  相似文献   

2.
3.
4.
Tryptic fragments of protein kinase C containing the kinase (45 KDa) and phorbol ester-binding activity (38 KDa) were separated by Mono O column chromatography. The purified phorbol ester-binding fragment exhibits a higher affinity for phosphatidylserine than the native enzyme but comparable Kd for [3H]phorbol 12,13-dibutyrate as the native enzyme. This proteolytic fragment binds phorbol ester equally efficient either in the presence or absence of Ca2+ and the addition of the kinase fragment did not restore the Ca2+-requirement for the binding. These results indicate that protein kinase C is composed of two functionally distinct units which can be expressed independently after limited proteolysis with trypsin.  相似文献   

5.
Progesterone receptor A and B subunits from laying hen oviducts were highly purified and their phosphorylation by cAMP-dependent protein kinase from bovine heart was studied. Both proteins are phosphorylated by the kinase using physiological or subphysiological concentrations of the enzyme. This result indicates that the receptors are good substrates. The reaction is dependent upon exogenous enzyme; no phosphorylation is seen in the absence of protein kinase.  相似文献   

6.
Binding of adenosine 3':5'-monophosphate (cAMP) to protein kinase (type I) from rabbit skeletal muscle has been investigated using spin-labeled cAMP derivatives. Different compounds were synthesized with the spin label attached by spacer chains of different length at different positions on the adenine base. Immobilization of the spin label, determined by comparing the electron-spin resonance spectra recorded in the presence of the kinase with those of the free ligand in solutions of different viscosities, gave information about the geometry of the cAMP site. Strong immobilization of the N-6 substituents up to a spacer length of seven atoms indicates a rather deep cleft of the cAMP site. The depth of this cleft differs, however, when the spin label is attached to the different positions at the adenine (N-6, C-2 and C-8). Whereas the N-6 derivatives indicate a rather deep site, the C-2 derivatives reveal a significantly smaller depth and C-8 substituents (syn conformation) obviously occupy a very shallow surface with almost no immobilation. In addition the binding affinities of the spin-labeled cAMP derivatives have been determined, together with those of a series of (diamagnetic) C-2 derivatives bearing hydrophobic alkyl chains of different length. The latter results helped to clarify the differences between the regions near to C-2 and N-6, respectively, of the cAMP site. N-6 spin-labeled derivatives have also been investigated in the presence of ATP and protein kinase. These results are interpreted as indicative of a conformational change at the cAMP site upon formation of the holoenzyme, due to binding of ATP, leaving cAMP less strongly immobilized.  相似文献   

7.
A cyclic AMP dependent protein kinase (PKA), its regulatory (R) and catalytic (C) subunits were purified to homogeneity from soluble extract of Microsporum gypseum. Purified enzyme showed a final specific activity of 277.9 nmol phosphate transferred min(-1) mg protein(-1) with kemptide as substrate. The enzyme preparation showed two bands with molecular masses of 76 kDa and 45 kDa on sodium dodecyl polyacrylamide gel electrophoresis. The 76 kDa subunit was found to be the regulatory (R) subunit of PKA holoenzyme as determined by its immunoreactivity and the isoelectric point of this subunit was 3.98. The 45 kDa subunit was found to be the catalytic (C) subunit by its immunoreactivity and phosphotransferase activity. Gel filtration using Sepharose CL-6B revealed the molecular mass of PKA holoenzyme to be 240 kDa, compatible with its tetrameric structure, consisting of two regulatory subunits (76 kDa) and two catalytic subunits (45 kDa). The specificity of enzyme towards protein acceptors in decreasing order of phosphorylation was found to be kemptide, casein, syntide and histone IIs. Purified enzyme had apparent K(m) values of 71 microM and 25 microM for ATP and kemptide, respectively. Phosphorylation was strongly inhibited by mammalian PKA inhibitor (PKI) but not by inhibitors of other protein kinases. The PKA showed maximum activity at pH 7.0 and enzyme activity was inhibited in the presence of N-ethylmaleimide (NEM) which shows the involvement of sulfhydryl groups for the activity of PKA. PKA phosphorylated a number of endogenous proteins suggesting the multifunctional role of cAMP dependent protein kinase in M. gypseum. Further work is under progress to identify the natural substrates of this enzyme through which it may regulate the enzymes involved in phospholipid metabolism.  相似文献   

8.
AMP-activated protein kinase (AMPK) is emerging as an important energy-sensing/signaling system in skeletal muscle. This kinase is activated allosterically by 5'-AMP and inhibited allosterically by creatine phosphate. Phosphorylation of AMPK by an upstream kinase, AMPK kinase (also activated allosterically by 5'-AMP), results in activation. It is activated in both rat and human muscle in response to muscle contraction, the extent of activation depending on work rate and muscle glycogen concentration. AMPK can also be activated chemically in resting muscle with 5-aminoimidazole-4-carboxamide-riboside, which enters the muscle and is phosphorylated to form ZMP, a nucleotide that mimics the effect of 5'-AMP. Once activated, AMPK is hypothesized to phosphorylate proteins involved in triggering fatty acid oxidation and glucose uptake. Evidence is also accumulating for a role of AMPK in inducing some of the adaptations to endurance training, including the increase in muscle GLUT-4, hexokinase, uncoupling protein 3, and some of the mitochondrial oxidative enzymes. It thus appears that AMPK has the capability of monitoring intramuscular energy charge and then acutely stimulating fat oxidation and glucose uptake to counteract the increased rates of ATP utilization during muscle contraction. In addition, this system may have the capability of enhancing capacity for ATP production when the muscle is exposed to endurance training.  相似文献   

9.
S Nakielny  P Cohen  J Wu    T Sturgill 《The EMBO journal》1992,11(6):2123-2129
A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues.  相似文献   

10.
11.
12.
Phosphorylation of the skeletal muscle AMP-deaminase by protein kinase C   总被引:1,自引:0,他引:1  
Protein kinase C catalyzes phosphorylation of the rat skeletal muscle AMP-deaminase in the presence of calcium ions and phosphatidylserine. At the same time, the catalytic subunit of cAMP-dependent protein kinase fails to phosphorylate AMP-deaminase. Ca2+, phosphatidylserine-dependent phosphorylation decreases three-fold (from 0.6 to 0.2 mM) the Km value and does not affect Vmax. Protein kinase C-induced phosphorylation of AMP-deaminase, besides ADP-ribosylation, is suggested to be involved in regulating the AMP-deaminase activity in vivo.  相似文献   

13.
14.
15.
16.
17.
A simple method is described for the isolation of crystalline pyruvate kinase from human skeletal muscle. The enzyme was purified by ammonium sulfate fractionation, heat treatment and crystallization. Two crystal forms of pyruvate kinase differing in solubility but not in specific activity were found. The homogenous enzyme preparations in triethanolamine buffer, pH 7.6 reveal at 25 degrees a specific activity of 245 U per mg protein, and of 340 U/mg in potassium phosphate buffer (50 mM). The enzyme is activated by inorganic phosphate and fructosediphosphate to the same extent, and inhibited non competetively by ammonium ion. The molecular weight as measured by gel filtration is 220,000 daltons and the enzyme molecule is composed of 4 subunits.  相似文献   

18.
Abstract The untranslatable, RNA polymerase II-dependent gene ( dutA ) of Dictyostelium discoideum is induced early in development. However, unlike other early genes, dutA induction was not affected by cAMP pulses and occurred normally in various cAMP-related mutant cells, the results indicating that this induction depended solely on factors other than cAMP. In the knockout strain of the catalytic subunit of protein kinase A, dutA expression was severely blocked and not recovered by cAMP pulses. This demonstrates that even the cAMP-independent gene, dutA , requires protein kinase A for its expression.  相似文献   

19.
Phosphoenolpyruvate-dependent protein kinase activity has been demonstrated in the soluble fraction of rat skeletal muscle. The reaction was not due to the formation of ATP in the incubation mixture. Cyclic AMP, calcium, ATP and a number of phosphate acceptor proteins did not stimulate the reaction. One 32P-labelled protein (Mr 25000) was observed on SDS gels. The phosphorylated protein contained acid stable phosphoserine as a major phosphorylated amino acid. The phosphorylation reaction in crude extracts was not directly proportional to the amount of protein, but typical of a two-component system; i.e., kinase and substrate. The chromatography of soluble proteins on Ultrogel AcA44 separated the phosphate acceptor protein(s) from the phosphoenolpyruvate-dependent protein kinase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号