首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mandal D  Moitra PK  Saha S  Basu J 《FEBS letters》2002,513(2-3):184-188
The appearance of phosphatidylserine (PS) on the outer surface of red cells is an important signal for their uptake by macrophages. We report for the first time that procaspase 3 present in the anucleated mature human erythrocyte is activated under oxidative stress induced by t-butylhydroperoxide leading to impairment of the aminophospholipid translocase, PS externalization and increased erythrophagocytosis. This is the first report linking caspase 3 activation to inhibition of flippase activity and uptake of red cells by macrophages.  相似文献   

2.
Endogenous phosphatidylserine (PS) exposure and lipid transport activity have been investigated for seven unrelated cases of Rhnull erythrocytes. Endogenous PS exposure was measured by prothrombinase activity. Out of six cases studied, two Rhnull samples exhibited abnormal aminophospholipid exposure, as suggested by the measurement of a lower Km of factor Xa for prothrombin. Aminophospholipid translocase activity was measured through the transbilayer redistribution of spin-labelled analogues of phospholipids. Provided that incubation conditions allow the maintainance of intracellular ATP level, no difference was observed between Rhnull and control erythrocytes, clearly indicating that the aminophospholipid translocase and Rh polypeptides are different molecular species.  相似文献   

3.
Macrophage recognition of apoptotic cells depends on externalization of phosphatidylserine (PS), which is normally maintained within the cytosolic leaflet of the plasma membrane by aminophospholipid translocase (APLT). APLT is sensitive to redox modifications of its -SH groups. Because activated macrophages produce reactive oxygen and nitrogen species, we hypothesized that macrophages can directly participate in apoptotic cell clearance by S-nitrosylation/oxidation and inhibition of APLT causing PS externalization. Here we report that exposure of target HL-60 cells to nitrosative stress inhibited APLT, induced PS externalization, and enhanced recognition and elimination of "nitrosatively" modified cells by RAW 264.7 macrophages. Using S-nitroso-L-cysteine-ethyl ester (SNCEE) and S-nitrosoglutathione (GSNO) that cause intracellular and extracellular trans-nitrosylation of proteins, respectively, we found that SNCEE (but not GSNO) caused significant S-nitrosylation/oxidation of thiols in HL-60 cells. SNCEE also strongly inhibited APLT, activated scramblase, and caused PS externalization. However, SNCEE did not induce caspase activation or nuclear condensation/fragmentation suggesting that PS externalization was dissociated from the common apoptotic pathway. Dithiothreitol reversed SNCEE-induced S-nitrosylation, APLT inhibition, and PS externalization. SNCEE but not GSNO stimulated phagocytosis of HL-60 cells. Moreover, phagocytosis of target cells by lipopolysaccharide-stimulated macrophages was significantly suppressed by an NO. scavenger, DAF-2. Thus, macrophage-induced nitrosylation/oxidation plays an important role in cell clearance, and hence in the resolution of inflammation.  相似文献   

4.
Phosphatidylserine (PS) in the plasma membrane of nonactivated human platelets is almost entirely located on the cytoplasmic side. Stimulation of platelets with the Ca2+ ionophore A23187 or combined action of collagen plus thrombin results in a rapid loss of the asymmetric distribution of PS. Also, treatment with the sulfhydryl-reactive compounds diamide and pyridyldithioethylamine (PDA) causes exposure of PS at the platelet outer surface. PS exposure is sensitively measured as the catalytic potential of platelets to enhance the rate of thrombin formation by the enzyme complex factor Xa-factor Va, since this reaction is essentially dependent on the presence of a PS-containing lipid surface. In this paper we demonstrate that endogenous PS, previously exposed at the outer surface during cell activation or sulfhydryl oxidation, can be translocated back to the cytoplasmic leaflet of the membrane by addition of dithiothreitol (DTT) but not by nonpermeable reducing agents like reduced glutathione. Treatment of platelets with trypsin or chymotrypsin, prior to addition of DTT, inhibits the inward transport of exposed PS. Moreover, severe depletion of metabolic ATP, as obtained by platelet stimulation with A23187 in the presence of metabolic inhibitors, though not inhibiting PS exposure at the outer surface, blocks the translocation of endogenous PS to the internal leaflet of the plasma membrane. These results strongly indicate the involvement of a membrane protein in the inward transport of endogenous PS. Recently, an aminophospholipid-specific translocase in the platelet membrane was postulated on the basis of the inward transport of exogenously added PS (analogues) [Sune, A., Bette-Bobillo, P., Bienvenue, A., Fellmann, P., & Devaux, P.F. (1987) Biochemistry 26, 2972-2978].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have synthesized radioiodinated photoactivatable phosphatidylcholine (125I-N3-PC) and phosphatidylserine (125I-N3-PS). After incubation with red blood cells in the dark, the labeled PC could be extracted but not the corresponding PS molecule, indicating that the latter was transported by the aminophospholipid translocase, but not the former. When irradiated immediately after incorporation, N3-PS, but not N3-PC, partially blocked subsequent translocation of spin-labeled aminophospholipids. Analysis of probe distribution by SDS-polyacrylamide gel electrophoresis revealed that 125I-N3-PS labeled seven membrane bound components with molecular masses between 140 and 27 kDa: one (or several) of these components should correspond to the aminophospholipid translocase.  相似文献   

6.
Serpins are a superfamily of structurally conserved proteins. Inhibitory serpins use a suicide substrate-like mechanism. Some are able to inhibit cysteine proteases in cross-class inhibition. Here, we demonstrate for the first time the strong inhibition of initiator and effector caspases 3 and 8 by two purified bovine SERPINA3s. SERPINA 3-1 (uniprotkb:Q9TTE1) binds tighly to human CASP3 (uniprotkb:P42574) and CASP8 (uniprotkb:Q14790) with kass of 4.2 × 105 and 1.4 × 106 M−1 s−1, respectively. A wholly similar inhibition of human CASP3 and CASP8 by SERPINA3-3 (uniprotkb:Q3ZEJ6) was also observed with kass of 1.5 × 105 and 2.7 × 106 M−1 s−1, respectively and form SDS-stable complexes with both caspases. By site-directed mutagenesis of bovSERPINA3-3, we identified Asp371 as the potential P1 residue for caspases. The ability of other members of this family to inhibit trypsin and caspases was analysed and discussed.

Structured summary

MINT-7234656: CASP8 (uniprotkb:Q14790) and SERPINA3-1 (uniprotkb:Q9TTE1) bind (MI:0407) by biochemical (MI:0401)MINT-7234634: SERPINA3-3 (uniprotkb:Q3ZEJ6) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)MINT-7234663: CASP8 (uniprotkb:Q14790) and SERPINA3-3 (uniprotkb:Q3ZEJ6) bind (MI:0407) by biochemical (MI:0401)MINT-7234625: SERPINA3-1 (uniprotkb:Q9TTE1) and CASP3 (uniprotkb:P42574) bind (MI:0407) by biochemical (MI:0401)  相似文献   

7.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) functions as an adaptor, positively regulating the NF-kappaB pathway. Here we report a new function of human TRAF6, the direct stimulation of apoptosis. The mechanism of apoptosis induction results from the capacity of human TRAF6 to interact and activate caspase 8. Both the C-terminal TRAF domain of human TRAF6, which directly interacts with the death effector domain of pro-caspase 8, and the N-terminal RING domain, which is required for activation of caspase 8, are necessary for the induction of apoptosis. The role of endogenous TRAF6 in regulating apoptosis was confirmed by extinguishing TRAF6 expression with specific small-hairpin RNA that resulted in diminished spontaneous apoptosis and resistance to induced apoptosis. In contrast to the human molecule, murine TRAF6 displayed less ability to induce apoptosis and a greater capacity to stimulate NF-kappaB activity. Human and murine TRAF6 are similar except in the region between zinc finger 5 and the TRAF domains. Reciprocal transfer of this connecting region completely exchanged the ability of human and murine TRAF6 to induce apoptosis and activate NF-kappaB. Unique regions of TRAF6 therefore play an important role in determining cell fate.  相似文献   

8.
J Connor  A J Schroit 《Biochemistry》1989,28(25):9680-9685
A 31-32-kDa integral membrane protein has been previously identified in erythrocytes as the protein most likely to be responsible for the transbilayer movement of phosphatidylserine (PS) [Connor & Schroit (1988) Biochemistry 27, 848-851]. Using similar techniques, we have identified analogous proteins of identical molecular weights in bovine, equine, ovine, porcine, canine, caprine, and rhesus red blood cells. Similar to human red blood cells, all of the mammalian cells were able to specifically transport an exogenously supplied fluorescent PS analogue from their outer-to-inner membrane leaflet. In addition, transport could be reversibly inhibited with the sulfhydryl-specific inhibitor pyridyldithioethylamine (PDA). PDA-sensitive PS transport was also observed in nucleated human and murine cell lines. Analysis of isolated plasma membranes from 125I-PDA-labeled cells revealed marked labeling of a 32,000-Da component. Attempts to inhibit PS transport by treating the cells with proteases, lectins, or antibody suggested that the 32-kDa polypeptide is an integral membrane protein that does not contain sites critical to its function at the cell surface.  相似文献   

9.
3- and 10-Bromofascaplysins was previously found to possess cytotoxic activity. In this study, we investigated their cancer preventive and proapoptotic properties. These effects were tested on mouse skin epidermal JB6 P+ Cl41 cell line, its stable transfectants, and human tumor HL-60, THP-1, SNU-C4, SK-MEL-28, DLD-1, MDA-MB-231, and HeLa cells using a variety of assessments, including a cell viability (MTS) assay, flow cytometry, anchorage-independent soft agar assay, luciferase assay, mitochondrial permeability assay, and Western blotting. 3- and 10-Bromofascaplysins were effective at submicromolar concentrations as the anticancer agents, which exerted their action, at least in part, through the induction of caspase-8, -9, -3-dependent apoptosis.  相似文献   

10.
Mature human erythrocytes circulate in blood for approximately 120 days, and senescent erythrocytes are removed by splenic macrophages. During this process, the cell membranes of senescent erythrocytes express phosphatidylserine, which is recognized as a signal for phagocytosis by macrophages. However, the mechanisms underlying phosphatidylserine exposure in senescent erythrocytes remain unclear. To clarify these mechanisms, we isolated senescent erythrocytes using density gradient centrifugation and applied fluorescence‐labelled lipids to investigate the flippase and scramblase activities. Senescent erythrocytes showed a decrease in flippase activity but not scramblase activity. Intracellular ATP and K+, the known influential factors on flippase activity, were altered in senescent erythrocytes. Furthermore, quantification by immunoblotting showed that the main flippase molecule in erythrocytes, ATP11C, was partially lost in the senescent cells. Collectively, these results suggest that multiple factors, including altered intracellular substances and reduced ATP11C levels, contribute to decreased flippase activity in senescent erythrocytes in turn to, present phosphatidylserine on their cell membrane. The present study may enable the identification of novel therapeutic approaches for anaemic states, such as those in inflammatory diseases, rheumatoid arthritis, or renal anaemia, resulting from the abnormally shortened lifespan of erythrocytes.  相似文献   

11.
The ability to cross-link [125I]iodo-azido-phosphatidylserine (125I-N3-PS) to the putative 32-kDa aminophospholipid transporter of human red blood cells (RBC) has been examined by SDS-PAGE. In the absence of transport inhibitors, 125I-N3-PS preferentially labeled the 32-kDa polypeptide, whereas treatment of the cells with pyridyldithioethylamine (PDA), a potent inhibitor of the aminophospholipid translocase, abrogated the association of the probe to this protein. ATP-depletion, low temperature, and diamide or 5,5'-dithiobis(2-nitrobenzoic acid), inhibitors that oxidize an endofacial sulfhydryl distinct from the PDA-sensitive site (Connor, J. and Schroit, A.J. (1990) Biochemistry 29, 37-43), also blocked association of the PS analogue to the protein. Once 125I-N3-PS became associated with the transporter, however, only PDA was able to partially displace it. These data suggest that sulfhydryl reactive reagents inhibit PS transport by blocking the association of PS with its transporter, a process that is also ATP- and temperature-dependent.  相似文献   

12.
The following two theories for the mechanism of ABCA1 in lipid efflux to apolipoprotein acceptors have been proposed: 1) that ABCA1 directly binds the apolipoprotein ligand and then facilitates lipid efflux and 2) that ABCA1 acts as a phosphatidylserine (PS) translocase, increasing PS levels in the plasma membrane exofacial leaflet, and that this is sufficient to facilitate apolipoprotein binding and lipid assembly. Upon induction of ABCA1 in RAW264.7 cells by cAMP analogues there was a moderate increase in cell surface PS as detected by annexin V binding, whereas apoAI binding was increased more robustly. Apoptosis induced large increases in annexin V and apoAI binding; however, apoptotic cells did not efflux lipids to apoAI. Annexin V did not act as a cholesterol acceptor, and it did not compete for the cholesterol acceptor or cell binding activity of apoAI. ApoAI binds to ABCA1-expressing cells, and with incubation at 37 degrees C apoAI is co-localized within the cells in ABCA1-containing endosomes. Fluorescent recovery after photobleaching demonstrated that apoAI bound to ABCA1-expressing cells was relatively immobile, suggesting that it was bound either directly or indirectly to an integral membrane protein. Although ABCA1 induction was associated with a small increase in cell surface PS, these results argue against the notion that this cell surface PS is sufficient to mediate cellular apoAI binding and lipid efflux.  相似文献   

13.
14.
15.
16.
The phospholipid distribution across red cell membrane bilayer is asymmetrical. Sphingomyelin and phosphatidylcholine are predominantly present in the outer membrane bilayer, whereas only small amounts of phosphatidylethanolamine and no phosphatidylserine are present in the outer membrane bilayer. The present study, using specific phospholipase, chemical probe, and Russell's viper venom clotting time has found that in neonatal red cells a portion of PS is also present in the outer membrane bilayer.  相似文献   

17.
The mitotic inducer Cdc2 is negatively regulated, in part, by phosphorylation on tyrosine 15. Human Wee1 is a tyrosine-specific protein kinase that phosphorylates Cdc2 on tyrosine 15. Human Wee1 is subject to multiple levels of regulation including reversible phosphorylation, proteolysis, and protein-protein interactions. Here we have investigated the contributions made by 14-3-3 binding to human Wee1 regulation and function. We report that the interactions of 14-3-3 proteins with human Wee1 are reduced during mitosis and are stable in the presence of the protein kinase inhibitor UCN-01. A mutant of Wee1 that is incapable of binding to 14-3-3 proteins has lower enzymatic activity, and this likely accounts for its reduced potency relative to wild-type Wee1 in inducing a G(2) cell cycle delay when overproduced in vivo. These findings indicate that 14-3-3 proteins function as positive regulators of the human Wee1 protein kinase.  相似文献   

18.
19.
Reynolds NK  Schade MA  Miller KG 《Genetics》2005,169(2):651-670
We used gain-of-function and null synaptic signaling network mutants to investigate the relationship of the G alpha(q) and G alpha(s) pathways to synaptic vesicle priming and to each other. Genetic epistasis studies using G alpha(q) gain-of-function and null mutations, along with a mutation that blocks synaptic vesicle priming and the synaptic vesicle priming stimulator phorbol ester, suggest that the G alpha(q) pathway generates the core, obligatory signals for synaptic vesicle priming. In contrast, the G alpha(s) pathway is not required for the core priming function, because steady-state levels of neurotransmitter release are not significantly altered in animals lacking a neuronal G alpha(s) pathway, even though these animals are strongly paralyzed as a result of functional (nondevelopmental) defects. However, our genetic analysis indicates that these two functionally distinct pathways converge and that they do so downstream of DAG production. Further linking the two pathways, our epistasis analysis of a ric-8 null mutant suggests that RIC-8 (a receptor-independent G alpha guanine nucleotide exchange factor) is required to maintain both the G alpha(q) vesicle priming pathway and the neuronal G alpha(s) pathway in a functional state. We propose that the neuronal G alpha(s) pathway transduces critical positional information onto the core G alpha(q) pathway to stabilize the priming of selected synapses that are optimal for locomotion.  相似文献   

20.
Das P  Estephan R  Banerjee P 《Life sciences》2003,72(23):2617-2627
A balance of the activities of multiple enzymes maintains the typical asymmetry of plasma membrane lipids in healthy cells. Such enzyme activities are (a) the aminophopholipid translocase (APTL) (a lipid-selective P-type ATPase that catalyzes inward movement of aminophospholipids), (b) the scramblase (a calcium-dependent and ATP-independent enzyme that catalyzes both inward and outward movement of lipids), (c) the floppase (an ATP-dependent enzyme that catalyzes only outward movement of lipids). Activation or inhibition of any one of these enzymes would lead to a loss in this asymmetry. Apoptosis-associated externalization of phophatidylserine has been reported for many different cell-types, but the exact mechanism involved in this loss of membrane asymmetry has not been identified yet. In this report we demonstrate concurrence of APTL inhibition, caspase-3 activation and apoptosis in CNS-derived HN2-5 and HOG cells. Additionally, we provide data to demonstrate that the phagocytosis of apoptotic, CNS-derived HN2-5 cells by the microglial cells requires recognition through phosphatidylserine (PS). Thus the enzyme aminopholipid translocase is inhibited during apoptosis of CNS-derived cells and this alone could account for the loss of plasma membrane lipid-asymmetry observed in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号