首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-9-1, a monoclonal IgM antibody raised against human null cell acute lymphocytic leukemia cells reacted with restricted regions of embryonic and adult tissues of the mouse. The antigen positive sites in the embryos included embryonic ectoderm, visceral endoderm, trophoblastic cells invading the maternal decidua of 5∼7-day embryos, primordial germ cells of 10∼12-day embryos, epithelium of nasal chamber, the bronchus, Mullerian duct, epididymis and bladder of 12∼17-day embryos. In the adult mice, C-9-1 antigen was detected in renal tubules, a part of stomach, bladder, endometrium and epididymal sperm. Embryonal carcinoma cells, but not endodermal cells of teratocarcinoma expressed the antigen. Thus, C-9-1 antigen showed distribution similar to SSEA-1. However, C-9-1 antigen was not detected in preimplantation embryos, nor in oviduct, both of which are positive for SSEA-1.  相似文献   

2.
Distribution of the stage-specific embryonic antigen (SSEA-1) was studied in postimplantation murine embryos, fetuses, and adult mice by immunohistochemical techniques. SSEA-1 was also localized on the stem cells of differentiating solid teratocarcinomas and on the surface of core cells of solid embryoid bodies. At the egg cylinder stage the antigen is restricted to embryonic ectoderm and visceral endoderm. During subsequent development SSEA-1 becomes localized to portions of the brain and primordial germ cells. In addition some sites of the urogenital anlage are SSEA-1 positive. In adult mice, the epithelium of the oviduct, the endometrium, and the epididymis are the cells most reactive with the monoclonal antibody to SSEA-1; although some areas of the brain and kidney tubules are weakly positive. Study of this antigenic determinant might disclose some previously unexpected cell lineage relationships and/or might elucidate events necessary for reproduction.  相似文献   

3.
In the current study we investigated the progesterone receptor exposure on the sperm from the testis and different parts of the epididymis, the relation to the sperm maturation stage, the functionality of the progesterone receptor and the capacity of sperm to undergo acrosome reaction. Exposed progesterone receptors on spermatozoa were detected using Progesterone-BSA conjugate labeled with fluorescein isothiocyanate (P-BSA-FITC) or a monoclonal antibody against progesterone receptor, C-262. Either progesterone or calcium ionophore was used to induce acrosome reaction. A high percentage (69 +/- 8%; mean +/- SD) of spermatozoa from the cauda epididymis showed P-BSA-FITC labeling at the onset of incubation, whereas only 0.1 +/- 1 and 4 +/- 2%, of spermatozoa from the testes, caput, and corpus epididymis, respectively, were labeled. There was no significant increase in P-BSA-FITC binding during the course of a 6 hr incubation. Treatment with either 10 microM progesterone or 5 microM calcium ionophore induced acrosome reaction in cauda epididymal sperm but not in testicular sperm, caput or corpus epipidymal sperm. It is concluded that the matured sperm of the dog from cauda epididymis and freshly ejaculated sperm demonstrate a functional membrane-bound progesterone receptor while less matured spermatozoa from the testicle, caput, and corpus epididymis fail to demonstrate such a receptor. Acrosome reaction of dog sperm can be induced using either progesterone or calcium ionophore; however, the maturation stages of spermatozoa influence this occurrence.  相似文献   

4.
Sperm granuloma may develop in the epididymis following vasectomy or chemical insults. Inflammation due to sperm granuloma causes abdominal and scrotal pain. Prolonged and persistent inflammation in the epididymis due to sperm granuloma may lead to infertility. Extravasation of germ cells into the interstitium of epididymis following damage of the epididymal epithelium is one of the primary reasons for sperm granuloma-associated pathology. Since testosterone is vital for the maintenance of epididymal epithelium, we investigated the pathology of sperm granuloma and its relationship with testosterone. Adult rats were treated with a Leydig cell-specific toxicant ethylene dimethane sulfonate (EDS) to eliminate testosterone. At 7 days post-EDS, disrupted epididymal epithelium and sperm granuloma were observed in the caput epididymis. Sperm granuloma and caput were collagen-filled indicating fibrosis. Numerous round apoptotic cells were localized inside the caput lumen and dispersed through the sperm granuloma. Tnp1 (round spermatid marker) was significantly higher in the epididymis of the EDS-treated group compared to controls suggesting the apoptotic cells were round spermatids. Increases in CD68+ macrophages and T cells (CD4 and CD8) support an inflammatory immune infiltration in post-EDS epididymis. However, testosterone replacement following EDS prevented the sperm granuloma-associated pathology. We suggest that the immune response in the sperm granuloma may be due to the increased numbers of apoptotic round spermatids or other testicular tissue components that may be released, in addition to the regression of epididymal epithelium due to testosterone loss. Thus, testosterone replacement prevents EDS-induced sperm granuloma and ameliorates sperm granuloma-associated pathology.  相似文献   

5.
An investigation was undertaken in rats to study the effects of intr avasal thread (IVT) on the spermatozoa in the vas deferens and reproduct ive organs at various intervals after IVT insertion. The quantity of sperm was slightly reduced and motility was greatly reduced in the distal portion of the vas. The percentage of head and tail separation of sperm in the distal vas decreased with time. The quantity of sperm always remained the same in the cauda epididymis although the percentage of motile sperm decreased at 1 and 6 months, but not at 9 months, after IVT insertion. Following IVT insertion there was insignificant change in the weight of the testis, epididymis, ventral prostate, and seminal vesicles and alkaline phosphatase activity in the ventral prostate. Although cause and significance of these findings are unclear, the sialic level in the epididymis was significantly reduced in all groups bearing IVT. The presence of IVT apparently causes a change to occur in the epididymis, but it is unknown whether this affects sperm maturation.  相似文献   

6.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

7.
小鼠附睾头精子,其头部Ca~(2 )在顶体前区顶体外膜内侧结合最多,Ca~(2 )沉淀反应颗粒于该处呈连续层状。附睾头豚鼠精子其头部结合Ca~(2 )含量很少,且主要结合于顶体前区腹面顶体外膜内侧。小鼠附睾体和附睾尾精子Ca~(2 )的分布特征基本上和附睾头精子相同。但豚鼠附睾尾精子顶体外膜内侧无Ca~(2 )结合。和附睾头、附睾尾的附睾液相比,附睾体附睾液基质内具有大量Ca~(2 )存在。附睾体柱状上皮细胞的微绒毛切面上也具有Ca~(2 )沉淀反应颗粒,微绒毛可能与附睾液Ca~(2 )含量的调节有关。精子尾部Ca~(2 )主要分布于线粒体内,在质膜内、外两侧和线粒体外膜外侧也结合有少量的Ca~(2 )。和小鼠精子相比,豚鼠精子尾部线粒体内具有大量的Ca~(2 )。  相似文献   

8.
猕猴精浆纤溶酶原激活因子的来源及在精子获能中的作用   总被引:13,自引:0,他引:13  
Zheng P  Zou RJ  Liu YX 《生理学报》2001,53(1):45-50
我们的前期工作表明,不育症人精液中纤溶酶原激活因子(plasminogen activator;PA)活性明显升高;给成年办和猕猴注射长效睾酮诱发无精过程中,精液PA含量也伴随上升,为进一步查明PA的来源和对精子的作用,原位杂交检测组织型PA(tPA),尿激酶型PA(uPA)及PA抑制因子-1(PAI-1)泊mRNAs在成年健康猕附睾、前列腺和精囊中的表达。体外培养猕猴精子,培液中加入uPA、tPA及其底物纤溶酶原(plasminogen),测试PA对精子活力、顶体反应及激活卵子的影响。结果表明,猕猴附睾、前列腺和精囊均表达tPA、uPA和PAI-1 mRNAs。加入uPA能维持精子的活力,使精子产生超激活运动,诱导顶体反应的发生,并使精子获得激活卵子的能力,这说明猕猴精浆PA除来源于睾丸外,可能主要来源于附睾及附性腺;在体外,uPA,而不是tPA,可能诱导精子获能。  相似文献   

9.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
一种醇类雄性不育剂对高原鼠兔精子的影响   总被引:2,自引:0,他引:2  
高原鼠兔(Ochotona curzoniae),隶属于兔形目(Lagomorpha),鼠兔科(Ochotonidae),又名黑唇鼠兔,主要分布于青藏高原及其边缘地带,栖息于海拔4 000 m左右的宽谷草原草甸区(王酉之和胡锦矗,1999),在食物链中扮演着重要的角色,是青藏高原草原生态系统中的关键物种.近年来随着全球变暖、若尔盖湿地水位下降等因素,高原鼠兔在若尔盖湿地繁殖加快,高原鼠兔成了危害草原生态系统的主要害兽(刘少英,2005).1997年,若尔盖湿地高原鼠兔平均种群密度为6 400只/km2(刘少英和冉江洪,1999),据我们2007年的调查显示,平均种群数量上升到25 000只/km2,控制鼠兔数量迫在眉睫.  相似文献   

11.
Although the role of the epididymis, a male accessory sex organ, in sperm maturation has been established for nearly four decades, the maturation process itself has not been linked to a specific molecule of epididymal origin. Here we show that Bin1b, a rat epididymis-specific beta-defensin with antimicrobial activity, can bind to the sperm head in different regions of the epididymis with varied binding patterns. In addition, Bin1b-expressing cells, either of epididymal origin or from a Bin1b-transfected cell line, can induce progressive sperm motility in immotile immature sperm. This induction of motility is mediated by the Bin1b-induced uptake of Ca(2+), a mechanism that has a less prominent role in maintaining motility in mature sperm. In vivo antisense experiments show that suppressed expression of Bin1b results in reduced binding of Bin1b to caput sperm and in considerable attenuation of sperm motility and progressive movement. Thus, beta-defensin is important for the acquisition of sperm motility and the initiation of sperm maturation.  相似文献   

12.
The epididymis is a long, tightly coiled tube within the lumen of which sperm matures. Sperm maturation involves morphological and biochemical changes in the sperm plasma membrane in response to epididymal secretions and their various proteins. Some of these proteins become outer membrane components while others become integral membrane proteins; transfer of some proteins to the sperm plasma membrane may be mediated by epididymosomes. Nevertheless, the molecular pathways by which spermatozoa acquire fertilizing capacity during their transit through the epididymis remain ambiguous. In a recent study of stallion epididymal sperm, we found that sperm harvested from different parts of the epididymis (caput, corpus and cauda) had a varying, but generally poor, ability to undergo the acrosome reaction in vitro. At ejaculation, however, sperm mix with seminal plasma which contains various components, including the small membranous vesicles known as prostasomes, that may enable the sperm to undergo physiological activation. Seminal plasma components may have a 'washing' effect and help to remove 'de-capacitation' factors that coat the sperm during storage in the cauda epididymis; alternatively seminal plasma and prostasomes may contain factors that more directly promote sperm activation. This article reviews current information on the roles of epididymal and accessory gland fluids on the acquisition of fertilizing capacity by stallion sperm.  相似文献   

13.
Xiao PJ  Peng ZY  Huang L  Li Y  Chen XH 《PloS one》2011,6(9):e25667
NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization.  相似文献   

14.
A 23 kDa polypeptide has been identified on the flagellum of sperm obtained from the cauda epididymis of the golden hamster. A monospecific antiserum to the 23 kDa hamster polypeptide was prepared and used to study its distribution on sperm, in the epididymis, and in epididymal fluid. In the cauda, the polypeptide is found on the midpiece and endpiece of the sperm tail, in detergent extracts of sperm, and in epididymal luminal fluid-enriched fractions. It is not present on sperm or in luminal fluid-enriched fractions from the caput epididymis. Immunocytochemical staining of epididymal tissue has demonstrated the 23 kDa polypeptide in the Golgi region of the principal cells of the proximal cauda and on sperm in the tubules of this segment and in tubules distal to it. Antiserum to the 23 kDa golden hamster polypeptide cross-reacts with sperm from rats and Chinese hamsters, but not with sperm from rabbits, cattle, mice, and guinea pigs. The antigen is localized to the tail of sperm obtained from the cauda of the rat and from the distal caput of the Chinese hamster. Immunoblots of detergent extracts of sperm and luminal fluid-enriched fractions from these two species reveal a 26 dKa polypeptide that is immunologically related to the golden hamster polypeptide.  相似文献   

15.
Changes in the number and distribution of spermatozoa in the epididymis of the adult brown marsupial mouse were examined during July/August in mated and unmated males. The effects of mating on epididymal sperm populations were studied in 2 groups of males each mated 3 times and compared with the number and distribution of spermatozoa in the epididymides of 4 unmated control groups. One testis and epididymis were removed from each animal (hemicastration) either before or early in the mating season to provide information on initial sperm content and distribution. The contralateral side was removed later in the mating season to examine the effects of mating or sexual abstinence on epididymal sperm distribution. Epididymal sperm number peaked in both the distal caput and distal corpus/proximal cauda epididymidis in late July. The total number of spermatozoa, including those remaining in the testis, available to each male at the beginning of the mating season in early August was approximately 4.4 x 10(6)/side. Although recruitment of spermatozoa into the epididymis from the testis continued until mid-August, sperm content of the epididymis reached a peak of about 3.5 x 10(6)/epididymis in early August. At this time approximately 0.9 x 10(6) spermatozoa remained in the testis which had ceased spermatogenic activity. Throughout the mating season, epididymal spermatozoa were concentrated in the distal corpus/proximal cauda regions of the epididymis and were replenished by spermatozoa from upper regions of the duct. Relatively few spermatozoa were found in the distal cauda epididymidis, confirming a low sperm storage capacity in this region. A constant loss of spermatozoa from the epididymis, probably via spermatorrhoea, occurred throughout the mating season and very few spermatozoa remained in unmated males in late August before the annual male die-off. Mating studies showed that an average of 0.23 x 10(6) spermatozoa/epididymis were delivered per mating in this species, but the number of spermatozoa released at each ejaculation may be as few as 0.04 x 10(6)/epididymis when sperm loss via spermatorrhoea is taken into account. We suggest that the unusual structure of the cauda epididymidis, which has a very restricted sperm storage capacity, may function to limit the numbers of spermatozoa available at each ejaculation and thus conserve the dwindling epididymal sperm reserves in order to maximize the number of successful matings which are possible during the mating season.  相似文献   

16.
The epididymis has been understudied, in part due to its cancer resistance and the development of effective technologies for sperm injection and in vitro fertilization. However, it is worthy of study because--absent advanced reproductive technology--its proper function is essential for conceiving children: sperm leaving the testis are immature and nonfertile. Epididymal functions can be divided into several general categories (1) concentration of sperm; (2) functional maturation; (3) storage in a quiescent state until ejaculation; (4) removal of degenerating sperm; (5) provision of appropriate conditions for survival; (6) transport by the myoid cells; (7) protection; (8) maintenance of the blood epididymal barrier. In the past decade investigators have focused on those maturational changes of the integral proteins of the sperm plasma membrane which are directly related to sperm-ova interactions. It has traditionally been thought that changes in the sperm plasma membrane proteins were limited to simple binding or removal of proteins or interactions with the proteases, glycosylases and glycotransferases present. However, the epididymis can also release secretory products in bulk through apical blebs and inject integral membrane proteins with epididymosomes which fuse with the plasma membrane. The epididymis also activates and cleaves enzymes present on the sperm surface (e.g., germ cell angiotensin converting enzyme), thus enabling them to modify proteins on the sperm membrane. Aside from the need to understand epididymal function relative to the sperm, basic science on epididymal physiology is warranted because it may help us understand the functioning of androgens, protection of tissues from oxidative damage, and resistance to cancer and benign hyperplasic growth.  相似文献   

17.
本实验取10只Wistar大鼠的睾丸和附睾,睾丸石蜡切片,附睾精子涂片后用苯胺蓝染色显示赖氨酸含量。结果是睾丸生精小管中精原细胞和精母细胞染色较深即赖氨酸含量较高,精子细胞和精子染色渐淡即赖氨酸含量降低,而附睾精子显示,在附睾头部的精子染色较深,附睾尾部的精子几乎不着色,应用显微分光光度计测定附睾精子,计算出头部的精子赖氨酸含量在1左右,尾部的精子赖氨酸含量接近于零。本实验还检测了10例正常人及10例不育者精子的赖氨酸,结果为正常人精子的赖氨酸含量较低,不育者精子赖氨酸含量高且畸形率也高。提示精子赖氨酸含量高是核蛋白转型异常的征象,可能是男性不育的一个重要原因。  相似文献   

18.
We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.  相似文献   

19.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

20.
Thirty-nine Brahman bulls with an initial age and weight of 301.7 +/- 4.1 d and 202.7 +/- 4.7 kg, respectively, were randomly allocated to 1 of 2 dietary treatment groups within age, weight and sire in order to study the influence of source of protein and stage of peripuberal period on testicular and epididymal function. In the soybean meal treatment the amount of protein undegradable in the rumen averaged 47%, while it was 72% in the fish meal treatment. The supplements were isocaloric and isonitrogenous. Bulls were electroejaculated, and castrations were performed randomly in a predetermined order when the first ejaculate with the first motile sperm cells (Stage 1), 10 to 25 million (Stage 2), and 50 million or more sperm cells (Stage 3 - puberty) was obtained. Testicular and epididymal traits were analyzed for a single testicle and epididymis. Daily sperm production, daily sperm production per gram of testicular parenchyma, testicular weight and testicular parenchyma weight were not affected by treatment. Bulls receiving fish meal had heavier (P < 0.01) epididymis than soybean meal-fed bulls (6.6 +/- 1.0 vs 3.9 +/- 0.6 g) but similar (P > 0.05) epididymal sperm reserves. Daily sperm production (1 testicle) was 115.2 +/- 0.1, 447.4 +/- 0.1, 792.7 +/- 0.1 million sperm cells, and daily sperm production per gram of testicular parenchyma was 1.5 +/- 0.5, 3.2 +/- 0.6 and 6.4 +/- 0.6 million sperm cells for bulls at Stage 1, 2 and 3, respectively. Sire and amount of undegradable intake protein had significant (P < 0.05) affects on the distribution of epididymal sperm reserves, with soybean meal-fed bulls having the higher proportions of epididymal sperm reserves in the cauda epididymis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号