首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.  相似文献   

2.
We used commercial bakers' yeast (Saccharomyces cerevisiae) to study the conversion of d-xylulose to ethanol in the presence of d-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for d-xylulose fermentation was 35 degrees C, and the optimal pH range was 4 to 6. The fermentation of d-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of d-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of d-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from d-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield.  相似文献   

3.
The experimental performance of a novel micro-bioreactor envisaged for parallel screening and development of industrial bioprocesses has been tested in this work. The micro-bioreactor with an internal volume of 4.5 mL is operated under oscillatory flow mixing (OFM), where a controllable mixing and mass transfer rates are achieved under batch or continuous laminar flow conditions. Several batch fermentations with a flocculent Saccharomyces cerevisiae strain were carried out at initial glucose concentrations (S(0)) range of approximately 5-20 g/L and compared to yeast growth kinetics in a stirred tank (ST) bioreactor. Aerobic fermentations were monitored ex situ in terms of pH, DO, glucose consumption, and biomass and ethanol production (wherever applicable). An average biomass production increase of 83% was obtained in the micro-bioreactor when compared with the ST, with less 93.6% air requirements. It also corresponded to a 214% increase on biomass production when compared with growth in a shaken flask (SF) at S(0) = 20 g/L. Further anaerobic fermentations at the same initial glucose concentration ranges gave the opportunity to use state-of-the-art fiber optics technology for on-line and real-time monitoring of this bioprocess. Time profiles of biomass concentration (measured as optical density (OD)) were very similar in the ST bioreactor and in the micro-bioreactor, with a highly reproducible yeast growth in these two scale-down platforms.  相似文献   

4.
The yeast Rhodosporidium toruloides NCYC 921 was grown on carbon or nitrogen limited batch cultures. The fermentations were monitored using traditional techniques and multi-parameter flow cytometry. The lipid content was assessed by flow cytometry in association with the fluorocrome Nile Red which emits yellow gold fluorescence when dissolved in neutral lipids and red fluorescence when dissolved in polar lipids. In this way, it was possible to at-line monitor the yeast lipid composition in terms of polarity classes throughout the batch growths. It was found that the neutral lipids decreased during the carbon-limited stationary phase, and increased during the nitrogen-limited batch growth. The maximum lipid content was obtained for the nitrogen-limited yeast culture (24% w/w lipids). The yeast cells with permeabilised membranes profile remained almost unchanged during the time course of both fermentations. The scatter light measurements (forward and side scatter signals) provided information on the yeast growth phase. The multi-parameter flow cytometric approach here reported represents a better control system based on measurements made at the single cell level for optimization of the yeast lipid production bioprocess performance.  相似文献   

5.
Abstract: An inclined sedimentation chamber and a modified 250-ml Erlenmeyer flask have been used as separation devices for perfusion fermentations with hybridoma cells. The maximum cell density is increased 2–16-fold compared to batch fermentations when the separation units are used. When the sedimentation chamber is used, IgG is continuously produced and the daily production is increased by a factor 3.7 compared to batch fermentation.  相似文献   

6.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

7.
The rate of ethanol production per milligram of cell protein begins to decline in the early stage of batch fermentation before high concentrations of ethanol have accumulated. In yeast extract-peptone medium (20% glucose), this initial decline appears to be related to growth and to result in part from a nutrient deficiency. The addition of yeast extract, peptone, and ashed preparations of these restored the ability of glucose-reconstituted medium (in which cells had been previously grown) to support vigorous growth. Magnesium was identified as the active component. Supplementing fermentations with 0.5 mM magnesium prolonged exponential growth, resulting in increased yeast cell mass. The addition of magnesium also reduced the decline in fermentative activity (micromoles of CO2 evolved per hour per milligram of protein) during the completion of batch fermentations. These two effects reduced the time required for the conversion of 20% glucose into ethanol by 1/3 with no measurable loss in ethanol yield (98% of theoretical maximum yield). It is possible that some of the reported beneficial effects of complex nutrients (soy flour and yeast extract) for ethanol production also result from the correction of a simple inorganic ion deficiency, such as magnesium.  相似文献   

8.
This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.  相似文献   

9.
Use of marine yeast and bakers' yeast in combination with Chlorella sp. for the large-scale production of the rotifer Brachionus plicatilis was investigated. The culture density of marine yeast fed rotifers was significantly higher than rotifers fed bakers' yeast. Rotifer production was significantly higher and the doubling time was lower for marine yeast fed rotifers than for bakers' yeast fed rotifers. It appears that the addition of marine yeast to the feed enhances the birth rate and overall production of rotifers in the culture system. The nutritional quality of rotifers is discussed.  相似文献   

10.
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45–50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90–95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47–0.50 g/g), and a final ethanol concentration of 100–110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.  相似文献   

11.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

12.
Production of a novel cyclodextrin glycosyltransferase (CGTase) from Klebsiella pneumoniae AS-22 strain, which converts starch predominantly to alpha-CD at high conversion yields, in batch, fed-batch, and continuous cultures, is presented. In batch fermentations, optimization of different operating parameters such as temperature, pH, agitation speed, and carbon-source concentration resulted in more than 6-fold increase in CGTase activity. The enzyme production was further improved by two fed-batch approaches. First, using glucose-based feed to increase cell density, followed by starch-based feed to induce enzyme production, resulted in high cell density of 76 g dry cell weight/L, although the CGTase production was low. Using the second approach of a single dextrin-based feed, 20-fold higher CGTase was produced compared to that in batch fermentations with media containing tapioca starch. In continuous operation, more than 8-fold increase in volumetric CGTase productivity was obtained using dextrin-based media compared to that in batch culture using starch-based media.  相似文献   

13.
The bacterium Serratia entomophila (Enterobacteriaceae) has been developed as a commercially available biopesticide for control of the pasture pest Costelytra zealandica. The influence of culture medium composition, dissolved oxygen (DO) concentration and harvesting time were investigated in order to optimise the production of S. entomophila. In batch fermentations, highest yields were achieved using sucrose (40 g L-1) as the carbon source, followed closely by fructose and molasses. The effect of yeast extract (YE), marmite and bakery yeast as cell growth enhancers was also examined in both batch and fed-batch mode. Culture medium containing 20 g L-1 of YE (fed-batch) produced the highest cell density. No significant effect on cell yield was detected when cultures were supplemented with bakery yeast or marmite. The DO concentration influenced biomass production: a 5-fold increase in cell density was achieved when the concentration of DO was maintained in the range of 20-50% (5.7×1010 CFUs mL-1) in comparison with 1% (1.2×1010 CFUs mL-1). In cultures maintained at 1 and 20% DO concentration, cells harvested from the exponential growth phase survived for less than 2 weeks when stored at 4°C. In contrast, high cell survival (85-100%) was achieved when cells were harvested after they had entered the stationary growth phase. Recommendations are provided for the production of robust, high cell density cultures of S. entomophila.  相似文献   

14.
Expression kinetics of the human Epidermal Growth Factor (hEGF) from the alpha-factor prepro region in a 2-mum based plasmid was studied in Saccharomyces cerevisiae. Production of hEGF was highly medium de pendent as a chemically defined, nonenriched media had a significantly lower yield than did enriched media. Also cells grown on yeast nitrogen base without amino acids with casamino acids degraded the hEGF after cell growth as opposed to a yeast extract, peptone, and dextrose (YEPD) medium, which elicited no measurable extracellular proteolysis of the hEGF. alpha-factor directed production kinetics of hEGF on the YEPD medium were growth associated, secretion limitations and extracellular degradation were negligible, and the hEGF was nearly 100% selectively secreted. With sufficient agitation, shake flask experiments were representative of aerated controlled batch fermentations. No effect of high cell density was observed on cell growth or hEGF production kinetics. The hollow fiber bioreactor had no direct effect on the substrate or protein yields of S. cerevisiae, however the low oxygen transfer capacity of the membrane was not sufficient to support respiration.  相似文献   

15.
The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O2 conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.  相似文献   

16.
Wine yeasts for the future   总被引:3,自引:0,他引:3  
International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.  相似文献   

17.
Recycle batch fermentations using immobilized cells of Propionibacterium acidipropionici were studied for propionate production from whey permeate, de-lactose whey permeate, and acid whey. Cells were immobilized in a spirally wound fibrous sheet packed in a 0.5-L column reactor, which was connected to a 5-L stirred tank batch fermentor with recirculation. The immobilized cells bioreactor served as a breeder for these recycle batch fermentations. High fermentation rates and conversions were obtained with these whey media without nutrient supplementation. It took approximately 55 h to ferment whey permeate containing approximately 45 g/L lactose to approximately 20 g/L propionic acid. Higher propionate concentrations can be produced with various concentrated whey media containing more lactose. The highest propionic acid concentration obtained with the recycle batch reactor was 65 g/L, which is much higher than the normal maximum concentration of 35 to 45 g/L reported in the literature. The volumetric productivity ranged from 0.22 g/L . h to 0.47 g/L . h, depending on the propionate concentration and whey medium used. The corresponding specific cell productivity was 0.033 to 0.07 g/L . g cell. The productivity increased to 0.68 g/L . h when whey permeate was supplemented with 1% (w/v) yeast extract. Compared with conventional batch fermentation, the recycle batch fermentation with the immobilized cell bioreactor allows faster fermentation, produces a higher concentration of product, and can be run continually without significant downtime. The process also produced similar fermentation results with nonsterile whey media. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
In high cell density batch fermentations, Zymomonas mobilis produced 91 g L(-1) ethanol in 90 min but culture viability fell significantly. Similar viability losses in rapid fermentations by yeast have recently been shown to be attributable in part to the high rate of change of the extracellular ethanol concentration. However, in simulated rapid fermentations in which ethanol was pumped continuously to low cell density Z. mobilis suspensions, increases in the rate of change of ethanol concentration in the range 21-83 g L(-1) h(-1) did not lead to accelerated viability losses. The lag phase of Zymomonas cultures exposed to a 30-g L(-1) step change in ethanol concentration was much shorter than that of Saccharomyces cerevisiae, providing evidence that the comparative insensitivity of Zymomonas to high rates of change of ethanol concentration is due to its ability to adapt to changes in ethanol concentration more rapidly than yeast. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO2 evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer’s yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO2 evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.  相似文献   

20.
The production of xylitol by the yeast Candida guilliermondii was investigated in batch fermentations with aspenwood hemicellulose hydrolysate and compared with results obtained in semi-defined media with a mixture of glucose and xylose. The hemicellulose hydrolysate had to be supplemented by yeast extract and the maximum xylitol yield (0.8 g g–1) and productivity (0.6 g l–1 h–1) were reached by controlling oxygen input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号