首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The intervening sequence (IVS) of the Tetrahymena thermophila ribosomal RNA precursor undergoes accurate self-splicing in vitro. The work presented here examines the requirement for Tetrahymena rRNA sequences in the 5' exon for the accuracy and efficiency of splicing. Three plasmids were constructed with nine, four and two nucleotides of the natural 5' exon sequence, followed by the IVS and 26 nucleotides of the Tetrahymena 3' exon. RNA was transcribed from these plasmids in vitro and tested for self-splicing activity. The efficiency of splicing, as measured by the production of ligated exons, is reduced as the natural 5' exon sequence is replaced with plasmid sequences. Accurate splicing persists even when only four nucleotides of the natural 5' exon sequence remain. When only two nucleotides of the natural exon remain, no ligated exons are observed. As the efficiency of the normal reaction diminishes, novel RNA species are produced in increasing amounts. The novel RNA species were examined and found to be products of aberrant reactions of the precursor RNA. Two of these aberrant reactions involve auto-addition of GTP to sites six nucleotides and 52 nucleotides downstream from the 3' splice site. The former site occurs just after the sequence GGU, and may indicate the existence of a GGU-binding site within the IVS RNA. The latter site follows the sequence CUCU, which is identical with the four nucleotides preceding the 5' splice site. This observation led to a model where where the CUCU sequence in the 3' exon acts as a cryptic 5' splice site. The model predicted the existence of a circular RNA containing the first 52 nucleotides of the 3' exon. A small circular RNA was isolated and partially sequenced and found to support the model. So, a cryptic 5' splice site can function even if it is located downstream from the 3' splice site. Precursor RNA labeled at its 5' end, presumably by a GTP exchange reaction mediated by the IVS, is also described.  相似文献   

3.
Intronic G triplets are frequently located adjacent to 5' splice sites in vertebrate pre-mRNAs and have been correlated with splicing efficiency and specificity via a mechanism that activates upstream 5' splice sites in exons containing duplicated sites (26). Using an intron dependent upon G triplets for maximal activity and 5' splice site specificity, we determined that these elements bind U1 snRNPs via base pairing with U1 RNA. This interaction is novel in that it uses nucleotides 8 to 10 of U1 RNA and is independent of nucleotides 1 to 7. In vivo functionality of base pairing was documented by restoring activity and specificity to mutated G triplets through compensating U1 RNA mutations. We suggest that the G-rich region near vertebrate 5' splice sites promotes accurate splice site recognition by recruiting the U1 snRNP.  相似文献   

4.
Structural basis for the regulation of splicing of a yeast messenger RNA   总被引:33,自引:0,他引:33  
F J Eng  J R Warner 《Cell》1991,65(5):797-804
  相似文献   

5.
6.
7.
S A Woodson  T R Cech 《Biochemistry》1991,30(8):2042-2050
The natural splice junction of the Tetrahymena large ribosomal RNA is flanked by hairpins that are phylogenetically conserved. The stem immediately preceding the splice junction involves nucleotides that also base pair with the internal guide sequence of the intervening sequence during splicing. Thus, precursors which contain wild-type exons can form two alternative helices. We have constructed a series of RNAs where the stem-loop in the 5' exon is more or less stable than in the wild-type precursor, and tested them in both forward and reverse self-splicing reactions. The presence of a stable hairpin in ligated exon substrates interferes with the ability of the intervening sequence to integrate at the splice junction. Similarly, the presence of the wild-type hairpin in the 5' exon reduces the rate of splicing 20-fold in short precursors. The data are consistent with a competition between unproductive formation of a hairpin in the 5' exon and productive pairing of the 5' exon with the internal guide sequence. The reduction of splicing by a hairpin that is a normal feature of rRNA structure is surprising; we propose that this attenuation is relieved in the natural splicing environment.  相似文献   

8.
9.
10.
11.
The sequence requirements for splicing of the Tetrahymena pre-rRNA have been examined by altering the rRNA gene to produce versions that contain insertions and deletions within the intervening sequence (IVS). The altered genes were transcribed and the RNA tested for self-splicing in vitro. A number of insertions (8-54 nucleotides) at three locations had no effect on self-splicing activity. Two of these insertions, located at a site 5 nucleotides preceding the 3'-end of the IVS, did not alter the choice of the 3' splice site. Thus the 3' splice site is not chosen by its distance from a fixed point within the IVS. Analysis of deletions constructed at two sites revealed two structures, a hairpin loop and a stem-loop, that are entirely dispensable for IVS excision in vitro. Three other regions were found to be necessary. The regions that are important for self-splicing are not restricted to the conserved sequence elements that define this class of intervening sequences. The requirement for structures within the IVS for pre-rRNA splicing is in sharp contrast to the very limited role of IVS structure in nuclear pre-mRNA splicing.  相似文献   

12.
G Garriga  H Bertrand  A M Lambowitz 《Cell》1984,36(3):623-634
We have identified nuclear mutants of Neurospora that are defective in splicing the mitochondrial large rRNA and that accumulate unspliced pre-rRNA (35S RNA). In cyt-4 mutants, the unspliced pre-rRNA contains short 3' end extensions (110 nucleotides) that are not present in pre-rRNAs from the other mutants. This and other characteristics suggest that the cyt-4 mutants may be primarily defective in 3' end synthesis and the RNA splicing defect occurs secondarily as a result of impaired RNA folding. The cyt-4 mutants also accumulate a "short" intron RNA and small exon RNAs that may reflect aberrant RNA cleavages. The 5' end of the short intron is about 285 nucleotides downstream from the 5' splice site at or near the base of the "central hairpin", a putative intermediate in folding of the pre-rRNA. Furthermore, the aberrant cleavage sites are immediately after a six nucleotide sequence (GAUAAU) homologous to the final splice junction (GAU/AAC).  相似文献   

13.
Region E3 of the adenovirus encodes about ten overlapping mRNAs (a to j) with different splicing patterns and with two RNA 3' end sites termed E3A and E3B. We have examined how deletions in 12 viable virus mutants affect differential RNA processing in E3. We assayed E3 mRNAs by the nuclease-gel and RNA blot procedures. Some deletions had no effect whereas others (e.g. deletion of a 3' splice or the E3A 3' end signal) had the anticipated effects on RNA processing. However, deletions in two regions had surprising effects. Deletions in one region (nucleotides 1691 to 2044) enhanced splicing at the upstream 951 5' splice site and the downstream 2157 and/or 2880 3' splice sites. Some of these deletions prevented RNA 3' end formation at the downstream E3A site. Deletion in the other region (nucleotides 2173 to 2237) enhanced an upstream splice site (951 to 2157) such that almost all pre-mRNA was processed into mRNA f. We suggest that these two regions contain cis-acting signals that regulate differential RNA processing. We discuss the results in terms of RNA folding and scanning models for splicing, as well as models for differential RNA 3' end formation at the E3A versus the E3B site.  相似文献   

14.
15.
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.  相似文献   

16.
S Teigelkamp  A J Newman    J D Beggs 《The EMBO journal》1995,14(11):2602-2612
Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8. PRP8 protein interacts with a region of at least eight exon nucleotides at the 5' splice site and a minimum of 13 exon nucleotides and part of the polypyrimidine tract in the 3' splice site region. Crosslinking of PRP8 to mutant and duplicated 3' splice sites indicated that the interaction is not sequence specific, nor does it depend on the splice site being functional. Binding of PRP8 to the 5' exon was established before step 1 and to the 3' splice site region after step 1 of splicing. These interactions place PRP8 close to the proposed catalytic core of the spliceosome during both transesterification reactions. To date, this represents the most extensive mapping of the binding site(s) of a splicing factor on the substrate RNA. We propose that the large binding sites of PRP8 stabilize the intrinsically weaker interactions of U5 snRNA with both exons at the splice sites for exon alignment by the U5 snRNP.  相似文献   

17.
Trans splicing of mRNA precursors in vitro   总被引:32,自引:0,他引:32  
M M Konarska  R A Padgett  P A Sharp 《Cell》1985,42(1):165-171
Two exon segments from two separate RNA molecules can be joined in a trans splicing process. In trans splicing reactions, an RNA molecule containing an exon, a 5' splice site, and adjacent intron sequences was mixed with an RNA molecule containing an exon, a 3' splice site, and adjacent intron sequences. The efficiency of trans splicing of these two RNAs increased if the two termini of the intervening sequences were paired in a short RNA duplex. However, trans splicing of two RNA molecules with no significant complementarity was also observed. These results strongly suggest that significant secondary structures within intervening sequences could affect the splicing of flanking exons. Similarly, RNAs that are complementary to segments within the intervening sequences could potentially regulate the selection of splice sites. Finally, some organisms might use trans splicing to distribute a single exon to many different mRNAs.  相似文献   

18.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

19.
20.
Several 3' splice signals are known todate. At the 3' splice site an AG doublet is frequently found. Just upstream of the splice site there is a string of 6-11 pyrimidines. More recently it has been found that one of the stages in the splicing process involves formation of a lariat, in which the 5' end of the intron forms a 2'-5' branch with an A residue located 18-37 nucleotides upstream of the 3' splice site. The branching-point consensus is weakly defined and consists of the sequence YNYTRAY, where Y is a pyrimidine, R a purine and N any base. The A in the sixth position is the one with which branching occurs. Here we present the results of extensive searches for additional putative signals around the branching-point consensus and the 3' splice site in rodent nuclear precursor mRNAs. The signals obtained for the over 370 rodent introns are compared with those found in a larger eukaryotic sample containing over 900 nuclear pre-mRNA introns. Of particular interest are GGGA and CCCA. In both analyses GGGA occurs about 60 nucleotides upstream and CCCA is found 3-40 nucleotides downstream from the 3' splice site. A model explaining some of the putative signals discussed here is also proposed. This model involves formation of alternate stem-loop structures around the branching point and 3' splice site. Such signals and structures can possibly aid in protein or nucleoprotein branching point and splice site recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号