首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

2.
3.
4.
The development of cartilage nodules in cultures of chick limb bud mesenchyme (Hamburger-Hamilton stages 23/24) is significantly promoted when the culture medium is supplemented with (poly-L-lysine (PL) (M(r) greater than or equal to 14K) (San Antonio and Tuan, 1986. Dev. Biol. 115: 313). Here we present findings consistent with the hypothesis that PL may promote chondrogenesis by interacting electrostatically with sulfated glycosaminoglycans (GAGs): (1) poly-L-ornithine, poly-L-histidine, poly-D,L-lysine, and lysine-containing heteropolypeptides stimulate chondrogenesis in proportion to their contents of cationic residues; (2) the effects of PL are diminished when limb mesenchyme cultures are supplemented with exogenous GAGs, including heparin, dermatan sulfate, and chondroitin sulfate; (3) in high density cultures of limb bud mesenchyme, the release of sulfated macromolecules, but not of proteins in general, into the culture medium was significantly inhibited by PL (398K M(r)) treatment, and a net increase in total GAG content of the PL-treated cultures was observed; and (4) in monolayer cultures of cells derived from other chick embryonic tissues, including liver, skeletal muscle, and calvaria, PL treatment promoted the cell layer-associated retention of sulfated GAG. These effects were not observed using the nonstimulatory, low M(r) PL (4K). Based on the above findings and those from previous studies, it is proposed that PL may promote chondrogenesis by interacting electrostatically with cartilage GAGs, thus trapping the extracellular matrix around the newly emerging cartilage nodules and thereby stabilizing their growth and differentiation.  相似文献   

5.
6.
7.
8.
Cartilage formation in the chick limb follows rapid proliferation, condensation and differentiation of limb mesenchyme. The control of these early events is poorly understood. Platelet-derived growth factor receptor alpha (PDGFR-alpha) is present throughout the mesenchyme of early chick limb buds, while its ligand, PDGF-A, is expressed in the surrounding epithelium. PDGFR-alpha is down-regulated in areas that will not give rise to cartilage and is then lost from cartilage forming areas after they begin to differentiate. PDGF-A increases chondrogenesis in micromass cultures of stage-20-24 limb buds, but not stage 25, where it inhibits chondrogenesis. Ectopic PDGF-A in the chick wing can lead to either a localized increase in cartilage formation, or an inhibition. Inhibition of PDGF signalling in the chick limb results in the loss of cartilage. These data demonstrate that PDGF-A functions to promote chondrogenesis at early stages of limb development and suggest that it inhibits chondrogenesis at later stages.  相似文献   

9.
10.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

11.
The present study was designed to compare effects of an established inhibitor of cell proliferation and growth, cytosine arabinoside (Ara C), with that of a prostaglandin E2 (PGE2) antagonist, AH6809, on chondrogenesis in cultured mesenchyme derived from stage 25 chick limb buds. Continuous treatment of cell cultures with 10(-4) M AH6809 prevented completely the twofold increases in DNA content of control cultures which occurred between Day 1 and Day 5 of culture and also produced 90% inhibition of chondrogenesis occurring in control cultures during this same period. Treatment of cells with Ara C (0.1-0.5 microgram/ml) produced equivalent inhibition of DNA content during the same time period; however, chondrogenesis, as evaluated on Day 5 of cell culture, remained at approximately 90% of control cultures. These results indicate that the inhibitory effect of PGE2 receptor blockade on cell growth in these cultures cannot account for the potent inhibitory effects observed on differentiation of cartilage and provide further evidence in support of the notion that PGE2 plays an important initiating role in the process of chondrocyte differentiation within limb mesenchyme.  相似文献   

12.
Abstract. Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 times 106 cells/ml) were exposed to different doses of BBE (0–01-1-0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2–30 times 106 cells/ml), on cultures of ‘young’ limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or ‘young’ limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

13.
Gap junctional communication during limb cartilage differentiation   总被引:4,自引:0,他引:4  
The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.  相似文献   

14.
We have studied the effect of β-d-galactoside-specific lectin purified from 14-day-old chick embryos on the differentiation of the mesenchymal cells dissociated from the limb buds of stage 24 chick embryos, using the micro-mass culture method described previously. When the cells were incubated with the lectin during the initial 12 hr of culture, cell proliferation became slightly activated. The lectin-treated cells formed a greater number of cartilage nodules and incorporated about twice as much as [35S]sulfate per cell than the control cultures. The results of this study show that the chick endogenous lectin promotes cartilage differentiation in vitro and that endogenous lectin may possibly be involved in chondrogenesis in vivo.  相似文献   

15.
Endochondral skeletal development involves the condensation of mesenchymal cells, their differentiation into chondrocytes, followed by chondrocyte maturation, hypertrophy, and matrix mineralization, and replacement by osteoblasts. The Wnt family of secreted proteins have been shown to play important roles in vertebrate limb formation. To examine the role(s) of Wnt members and their transmembrane-spanning receptor(s), Frizzled (fz), we retrovirally misexpressed Wnt-5a, Wnt-7a, chicken frizzled-1 (Chfz-1), and frizzled-7 (Chfz-7) in long-term (21 day) high density, micromass cultures of stage 23/24 chick embryonic limb mesenchyme. This culture system recapitulates in vitro the entire differentiation (days 1-10), growth (days 5-12), and maturation and hypertrophy (from day 12 on) program of cartilage development. Wnt-7a misexpression severely inhibited chondrogenesis from day 7 onward. Wnt-5a misexpression resulted in a poor hypertrophic phenotype by day 14. Chfz-7 misexpression caused a slight delay of chondrocyte maturation based on histology, whereas Chfz-1 misexpression did not affect the chondrogenic phenotype. Misexpression of all Wnt members decreased collagen type X expression and alkaline phosphatase activity at day 21. Our findings implicate functional role(s) for Wnt signaling throughout embryonic cartilage development, and show the utility of the long-term in vitro limb mesenchyme culture system for such studies.  相似文献   

16.
Chondrogenesis of mesenchymal cells from the frontonasal mass, mandibles and maxillae of stage-24 chick embryos has been investigated in micromass (high-density) cultures. Distinct differences in the amount and pattern of cartilage differentiation are found. In cultures of frontonasal mass cells, a central sheet of cartilage develops; in cultures of mandible cells, less cartilage differentiates and nodules form; while in cultures of maxillae cells, virtually no chondrogenesis takes place. The same patterns of cartilage are found in cultures established from stage-20 embryos. At stage 28, frontonasal mass cultures form cartilage nodules and the number of nodules in mandible cultures is markedly decreased. There are striking parallels between the chondrogenic patterns of cells from the face and limb buds in micromass culture. The frontonasal mass cell cultures of stage-20 and -24 chick embryos resemble those established from the progress zone of limb buds. The progress zone is an undifferentiated region of the limb in which positional cues operate. Cultures established from the frontonasal mass of stage-28 chick embryos and from the mandibles of all stages resemble cultures of whole limb buds. These contain a mixture of committed and uncommitted cells. Ectoderm from facial primordia locally inhibits chondrogenesis in micromass cultures and this could provide a positional cue. The differences in chondrogenic potential of cells from facial primordia may underlie the specific retinoid effects on the frontonasal mass.  相似文献   

17.
Type II collagen is a major component of cartilage extracellular matrix. Differentiation of mesenchyme into cartilage involves the cessation of type I collagen synthesis and the onset of type II collagen synthesis. Solution hybridization of mRNA isolated from chick limb buds with a cDNA probe to type II collagen mRNA showed the presence of small amounts of type II collagen message in mesenchymal chick limbs. We have examined the localization of type II collagen mRNA in mesenchymal chick wing buds by in situ hybridization using single stranded RNA probes. Our results show a small but detectable amount of type II collagen RNA distributed uniformly in early limbs until the first precartilage condensations form at stage 22. This is interesting because it is known that mesenchyme isolated from chick wing buds has the capacity to undergo chondrogenesis in culture, even if taken from nonchondrogenic areas of the limb. At stage 23, type II collagen mRNA is found at significantly increased levels in the cells of the precartilage condensation when compared to the other limb cells. As chondrogenesis proceeds, the amount of type II collagen RNA increases even more in cells of the cartilage elements. The signal in the peripheral tissue is indistinguishable from background. These results show that type II collagen message exists at low levels in cells throughout the mesenchymal chick wing bud, until the formation of the condensation results in an elevation of type II mRNA in the prechondrogenic cells found in the core of the limb.  相似文献   

18.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

19.
The effect of developmental stage on chondrogenic capacity in high-density cell cultures of chick embryonic wing bud mesenchyme is examined. Mesenchyme from stage 19 embryos forms aggregates of closely associated cells which do not form cartilage matrix, nor contain significant levels of type II collagen that are detectable by immunofluorescence, unless they are treated with dibutyryl cyclic AMP. Mesenchyme from stage 24 embryonic wing buds in high-density cell cultures will spontaneously form cartilage, as defined by electron microscopy and immunofluorescence with antibody to type II collagen. Cultures prepared from stage 26 wings form numerous aggregates which fail to accumulate an Alcian blue-staining matrix and which resemble mesenchyme cells morphologically. However, because these cells show considerable intracellular immunofluorescence for type II collagen, they are actually unexpressed cartilage cells. Several treatments, including exposure to dibutyryl cyclic AMP, ascorbic acid and an atmosphere of 5% oxygen, or mixture with small numbers of stage 24 wing mesenchyme cells, stimulate expression, as determined by the accumulation of an Alcian blue-staining matrix and an ultrastructurally recognizable cartilage matrix. Since the addition of similar numbers of differentiated cartilage cells does not stimulate expression of stage 26 cells, it is proposed that initial cartilage expression is dependent on a mesenchyme-specific influence which might be removed by cell dissociation. These studies demonstrate that there are at least two distinct transitions in cartilage differentiation: one involves the conversion of mesenchyme to unexpressed chondrocytes and the second involves mesenchyme-dependent expression of chondrogenic differentiation.  相似文献   

20.
Demineralized adult bone contains factors which stimulate nonskeletal mesenchymal cells to undergo a developmental progression resulting in de novo endochondral ossification. In this study, isolated embryonic stage 24 chick limb bud mesenchymal cells maintained in culture were utilized as an in vitro assay system for detection of specific bioactive components solubilized from adult chicken bone matrix. Guanidinium chloride extracts (4 M) of demineralized-defatted bone were fractionated and tested in limb mesenchymal cell cultures for possible effects upon growth and chondrogenesis. Two low-molecular-weight fractions were found to be active in these cultures. A cold water-insoluble, but warm Trisbuffered saline-soluble fraction provoked a dose-dependent increase in the amount of cartilage formed after 7 days of continuous exposure as evidenced by an increased number of chondrocytes observed in living cultures, elevated cell-layer-associated 35S incorporation per microgram DNA, and greater numbers of toluidine blue-staining foci (i.e., cartilage nodules). Growth inhibitory substances were detected in a low-molecular-weight, water-soluble fraction; 7 days of continuous exposure to this material resulted in less cartilage formation and reduced cell numbers (accumulated DNA) on each plate. These observations demonstrate the usefulness of stage 24 chick limb bud cell cultures for identifying bioactive factors extracted from adult bone matrix. In addition, the action of these factors on mesenchymal cells may now be studied in a cell culture system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号