首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deep-sea archaeon Methanococcus jannaschii was grown at 86 degrees C and under 8, 250, and 500 atm (1 atm = 101.29 kPa) of hyperbaric pressure in a high-pressure, high-temperature bioreactor. The core lipid composition of cultures grown at 250 or 500 atm, as analyzed by supercritical fluid chromatography, exhibited an increased proportion of macrocyclic archaeol and corresponding reductions in aracheol and caldarchaeol compared with the 8-atm cultures. Thermal analysis of a model core-lipid system (23% archaeol, 37% macrocyclic archaeol, and 40% caldarchaeol) using differential scanning calorimetry revealed no well-defined phase transition in the temperature range of 20 to 120 degrees C. Complementary studies of spin-labeled samples under 10 and 500 atm in a special high-pressure, high-temperature electron paramagnetic resonance spectroscopy cell supported the differential scanning calorimetry phase transition data and established that pressure has a lipid-ordering effect over the full range of M. jannaschii's growth temperatures. Specifically, pressure shifted the temperature dependence of lipid fluidity by ca. 10 degrees C/500 atm.  相似文献   

2.
Most biologists do not take into account that the greatest portion of today's biosphere is in the realm of environmental extremes, most of it being cold and under pressure. Since bacteria have the ability to adapt to environmental extremes, a close examination for the presence and/or growth of bacteria at high and low temperatures, low temperature and reduced pressure (less than 1 atm), low temperature and increased hydrostatic pressure should be made. It is also within the realm of possibility that life may have arisen in an environmental extreme on the primordial earth and then evolved over time to live under moderate temperatures and 1 atm. Microbial life has been demonstrated at temperatures slightly greater than 90°C, below 0°C, at hydrostatic pressures of 1100 atm, and possibly at cold temperatures in the atmosphere (less than 1 atm). Laboratory experiments have shown that certain enzyme reactions can occur above 100°C under hydrostatic pressure, at –26°C and at 5°C under hydrostatic pressure.Proceedings of the Fourth College Park Colloquium on Chemical Evolution:Limits of Life, University of Maryland, College Park, 18–20 October 1978.  相似文献   

3.
This study was undertaken to determine the influence of temperature (20, 37, and 50°C) and pressure (1, 100 and 200 atm) on a strain of sulphate-reducing bacteria (SRB), isolated from an oil reservoir in Alaska. The effect of different concentrations (100, 200 and 500 ppm) of biocides isothiazolone (ITZ) and formaldehyde (FA) on planktonic population of SRB was tested in order to determine the efficacy of biocides under these conditions.The highest bacterial growth rate was 0.26±0.03 h−1 at 37°C under pressure of 100 atm. Statistical evaluation showed that although both temperature and pressure had exerted an effect on bacteria by significantly increasing their growth rate; temperature rather than pressure had greater influence on bacterial proliferation.The effectiveness of both FA and ITZ in controlling planktonic populations of SRB was comparable except at 37°C/200 atm, under which conditions FA proved to be more potent. The effectiveness of both biocides decreased with an increase in cell number, as observed at 37°C/100 atm.  相似文献   

4.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

5.
Acholeplasma laidlawii cells were grown in cholesterol-enriched medium and exposed continuously to either air (control), 4.0 vol.% halothane in air at 1 atm pressure (4% atm halothane), or 80% cyclopropane in oxygen for 24 h at 37°C. Cells grown in the presence of 4% atm halothane or 80% cyclopropane had approximately twice as much membrane cholesterol content/mg protein as the control cells. Cells grown in an anesthetic environment also tended to have a higher membrane cholesterol/phospholipid molar ratio compared to control cells. Membranes isolated from halothane-exposed cells grown in a cholesterol-enriched medium were more ordered at 37°C (measurements were made with no anesthetic present) than membranes from control cells grown in an identically enriched medium. This difference in membrane physical state between control and anesthetic-exposed cells decreased as the temperature decreased, and disappeared at approx. 23°C. Continuous exposure of A. laidlawii to 4% atm halothane or 80% cyclopropane for 24 h did not markedly affect membrane fatty acid composition, either in cells grown on an unsupplemented medium or in cells grown in a medium enriched in myristic, palmitic or stearic acids. These results further support the hypothesis that an increased membrane cholesterol content may play a role in the tolerance or dependence that develops after chronic exposure to anesthetic agents.  相似文献   

6.
Short-, medium-, and long-chain fatty acid:CoA ligases from human liver were tested for their sensitivity to inhibition by triacsin C. The short-chain fatty acid:CoA ligase was inhibited less than 10% by concentrations of triacsin C as high as 80 microM. The two mitochondrial xenobiotic/medium-chain fatty acid:CoA ligases (XM-ligases), HXM-A and HXM-B, were partially inhibited by triacsin C, and the inhibitions were characterized by low affinity for triacsin C (K(I) values > 100 microM). These inhibitions were found to be the result of triacsin C competing with medium-chain fatty acid for binding at the active site. The microsomal and mitochondrial forms of long-chain fatty acid:CoA ligase (also termed long-chain fatty acyl-CoA synthetase, or long-chain acyl-CoA synthetase LACS) were potently inhibited by triacsin C, and the inhibition had identical characteristics for both LACS forms. Dixon plots of this inhibition were biphasic. There is a high-affinity site with a K(I) of 0.1 microM that accounts for a maximum of 70% of the inhibition. There is also a low affinity site with a K(I) of 6 microM that accounts for a maximum of 30% inhibition. Kinetic analysis revealed that the high-affinity inhibition of the mitochondrial and microsomal LACS forms is the result of triacsin C binding at the palmitate substrate site.The high-affinity triacsin C inhibition of both the mitochondrial and microsomal LACS forms was found to require a high concentration of free Mg(2+), with the EC(50) for inhibition being 3 mM free Mg(2+). The low affinity triacsin C inhibition was also enhanced by Mg(2+). The data suggests that Mg(2+) promotes triacsin C inhibition of LACS by enhancing binding at the palmitate binding site. In contrast, the partial inhibition of the XM-ligases by triacsin C, which showed only a low-affinity component, did not require Mg(2+).  相似文献   

7.
High performance liquid chromatography (HPLC) was used to assess the uptake dynamics of the cryoprotectant DMSO by intact unfertilized eggs (stage 0), 8-cell (stage 5) and eyed embryos (stage 30) of medaka, Oryzias latipes, the relation of the internal concentration (Cin) of DMSO with fertilization and survival rates, and the effects of several factors on these processes. The factors examined were: cryoprotectant concentration (0.6, 1.2, 1.9 and 2.5 M), impregnation time (1, 3, 5, 10, 15 and 20 min), temperature (0, 5 and 20 degrees C), hydrostatic pressure (0 and 50 atm), and the osmotic conditions of the materials (normal or partially dehydrated). Cryoprotectant permeation, estimated from the initial rates of DMSO uptake, was higher in embryos than in eggs and increased with embryonic development; however, the DMSO Cin in eyed embryos reached a plateau at 1-5 min and could not be increased by prolonging impregnation. The highest fertilization and survival rates for any given DMSO Cin were obtained with high concentrations and short times of impregnation rather than low concentrations and long impregnation times. Application of hydrostatic pressure (50 atm) and exposure for 3 min to a 1 M trehalose solution prior to impregnation induced a substantial increase in the DMSO Cin of 8-cell embryos in comparison to untreated controls with no significant effect on survival. Hydrostatic pressure also promoted DMSO uptake in unfertilized eggs, but with rapid loss of viability, and was ineffective in eyed embryos. The uptake of DMSO and its toxicity to 8-cell embryos were directly proportional to the temperature of impregnation. The results of this study reveal important interactions between cryoprotectant concentration, impregnation time and the developmental stage (or type) of the materials and provide evidence that hydrostatic pressure, temperature of impregnation and the osmotic conditions of the materials can be manipulated to increase the uptake of cryoprotectant by fish eggs and embryos.  相似文献   

8.
Mid-infrared spectroscopy (MIR) is used to predict fatty acid (FA) composition of individual milk samples (n=267) of Brown Swiss cows. FAs were analyzed by gas chromatography as a reference method. Samples were scanned (4000 to 900 cm-1) by MIR, and predictive models were developed using modified partial least squares regressions with full cross-validation. The methods using a first derivative or multiplicative scatter corrected plus first derivative resulted, on average, in the best predictions. Coefficients of correlation between measured and predicted C8:0, C10:0, C12:0, C14:0, anteiso-C17:0, c9-C18:1, and medium- and long-chain FA, and saturated, monounsaturated and unsaturated FA ranged from 0.71 to 0.77, suggesting that prediction models can be implemented in milk recording schemes to routinely collect information on FA composition from the whole Brown Swiss population for breeding purposes.  相似文献   

9.
As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements (K. Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry--the cause of the concern.  相似文献   

10.
11.
Roux-en-Y gastric bypass (RYGB) is an effective method to attain sustained weight loss and diabetes remission. We aimed to elucidate early changes in the plasma metabolome and lipidome after RYGB. Plasma samples from 16 insulin-resistant morbidly obese subjects, of whom 14 had diabetes, were subjected to global metabolomics and lipidomics analysis at pre-surgery and 4 and 42 days after RYGB. Metabolites and lipid species were compared between time points and between subjects who were in remission and not in remission from diabetes 2 years after surgery. We found that the variables that were most discriminatory between time points were decanoic acid and octanoic acid, which were elevated 42 days after surgery, and sphingomyelins (18:1/21:0 and 18:1/23:3), which were at their lowest level 42 days after surgery. Insulin levels were lower at 4 and 42 days after surgery compared with pre-surgery levels. At 4 days after surgery, insulin levels correlated positively with metabolites of branched chain and aromatic amino acid metabolism and negatively with triglycerides with long-chain fatty acids. Of the 14 subjects with diabetes prior to surgery, 7 were in remission 2 years after surgery. The subjects in remission displayed higher pre-surgery levels of tricarboxylic acid cycle intermediates and triglycerides with long-chain fatty acids compared with subjects not in remission. Thus, metabolic alterations are induced soon after surgery and subjects with diabetes remission differ in the metabolic profiles at pre- and early post-surgery time points compared to patients not in remission.  相似文献   

12.
The phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine was studied under high pressures of helium (340 atm), nitrogen (340 atm), nitrous oxide (43 atm), cyclopropane (4.4 atm) and n-propane (8.2 atm), using a turbidimetric technique. Helium and nitrogen increased the transition temperature by 0.021 and 0.006°C/atm, respectively, compared with 0.024°C/atm for hydrostatic pressure. Nitrous oxide reduced the transition by 0.58°C/atm. The hydrocarbon gases spread the transition width and lowered the transition temperature with increasing effect at higher doses. Comparisons with other membrane probes are made and the concentration of gases in the bilayer which lower the transition temperature by 1°C are estimated, in mol%: He, 10.2; N2, 13.2; N2O, 9.04; n-C3H8, 6.3 and cyclopropane, 12.8.  相似文献   

13.
The effects of hyperbaric helium pressures on the growth and metabolism of the deep-sea isolate ES4 were investigated. In a stainless steel reactor, cell growth was completely inhibited but metabolic gas production was observed. From 85 to 100°C, CO2 production proceeded two to three times faster at 500 atm (1 atm = 101.29 kPa) than at 8 atm. At 105°C, no CO2 was produced until the pressure was increased to 500 atm. Hydrogen and H2S were also produced biotically but were not quantifiable at pressures above 8 atm because of the high concentration of helium. In a glass-lined vessel, growth occurred but the growth rate was not accelerated by pressure. In most cases at temperatures below 100°C, the growth rate was lower at elevated pressures; at 100°C, the growth rates at 8, 250, and 500 atm were nearly identical. Unlike in the stainless steel vessel, CO2 production was exponential during growth and continued for only a short time after growth. In addition, relatively little H2 was produced in the glass-lined vessel, and there was no growth or gas production at 105°C at any pressure. The behavior of ES4 as a function of temperature and pressure was thus very sensitive to the experimental conditions.  相似文献   

14.
The formal equilibrium reduction potentials of recombinant electron transport protein, rubredoxin (MW = 7500 Da), from both the mesophilic Clostridium pasteurianum (Topt = 37 degrees C) and hyperthermophilic Pyrococcus furiosus (Topt = 95 degrees C) were recorded as a function of pressure and temperature. Measurements were made utilizing a specially designed stainless steel electrochemical cell that easily maintains pressures between 1 and 600 atm and a temperature-controlled cell that maintains temperatures between 4 and 100 degrees C. The reduction potential of P. furiosus rubredoxin was determined to be 31 mV at 25 degrees C and 1 atm, -93 mV at 95 degrees C and 1 atm, and 44 mV at 25 degrees C and 400 atm. Thus, the reduction potential of P. furiosus rubredoxin obtained under standard conditions is likely to be dramatically different from the reduction potential obtained under its normal operating conditions. Thermodynamic parameters associated with electron transfer were determined for both rubredoxins (for C. pasteurianum, DeltaV degrees = -27 mL/mol, DeltaS degrees = -36 cal K-1 mol-1, and DeltaH degrees = -10 kcal/mol, and for P. furiosus, DeltaV degrees = -31 mL/mol, DeltaS degrees = -41 cal K-1 mol-1, and DeltaH degrees = -13 kcal/mol) from its pressure- and temperature-reduction potential profiles. The thermodynamic parameters for electron transfer (DeltaV degrees, DeltaS degrees, and DeltaH degrees ) for both proteins were very similar, which is not surprising considering their structural similarities and sequence homology. Despite the fact that these two proteins exhibit dramatic differences in thermostability, it appears that structural changes that confer dramatic differences in thermostability do not significantly alter electron transfer reactivity. The experimental changes in reduction potential as a function of pressure and temperature were simulated using a continuum dielectric electrostatic model (DELPHI). A reasonable estimate of the protein dielectric constant (epsilonprotein) of 6 for both rubredoxins was determined from these simulations. A discussion is presented regarding the analysis of electrostatic interaction energies of biomolecules through pressure- and temperature-controlled electrochemical studies.  相似文献   

15.
The thermodynamic parameters for the heat activation of the sporangiospores of Phycomyces blakesleeanus were determined. For the apparent activation enthalpy (DeltaH(#)) a value of 1,151 kJ/mol was found, whereas a value of 3,644 J./ degrees K.mol was calculated for the apparent activation entropy (DeltaS(#)). n-Alcohols (from methanol to octanol), phenethyl alcohol, and furfural lowered the activation temperature of P. blakesleeanus spores. The heat resistance of the spores was lowered concomitantly. The effect of the alcohols was a linear function of the concentration in the range that could be applied. When the log of the concentration needed to produce an equal shift of the activation temperature was plotted for each alochol against the log of the octanol/water partition coefficient, a straight line was obtained. The free energy of adsorption of the n-alcohols to their active sites was calculated to be -2,487 J/mol of CH(2) groups. Although still inconclusive, this points toward an involvement of protein in the activation process. The effect of phenethyl alcohol was similar to the effect of n-alcohols, but furfural produced a greater shift than would be expected from the value of its partition coefficient. When the heat activation of the spores was performed under high pressure, the activation temperature was raised by 2 to 4 degrees K/1,000 atm. However, with pressures higher than 1,000 atm (1.013 x 10(5) kPa) the activation temperature was lowered until the pressure became lethal (more than 2,500 atm). It is known that membrane phase transition temperatures are shifted upward by about 20 degrees K/1,000 atm and that protein conformational changes are shifted upward by 2 to 6 degrees K/1,000 atm. Consequently, heat activation of fungal spores seems to be triggered by a protein conformational change and not by a membrane phase transition. Activation volumes of -54.1 cm(3)/mol at 38 degrees C and -79.3 cm(2)/mol at 40 degrees C were found for the lowering effect of high pressure on the heat activation temperature.  相似文献   

16.
Microorganisms present in Atlantic Ocean sediment samples collected at a depth of 4,940 m were found to be capable of utilizing hydrocarbons under both ambient and in situ pressures. The rate of utilization under in situ pressure (500 atm) and ambient temperature (20 C) was found to be significantly less compared with hydrocarbon utilization examined under conditions of ambient temperature (20 C) and pressure (1 atm).  相似文献   

17.
With the aim of developing a new cholesterol esterase for eliminating lipids on used contact lenses, microorganisms were screened for the enzyme activity. A Pseudomonas aeruginosa isolated from soil was found to produce a desirable enzyme. The enzyme had an isoelectric point of 3.2, and molecular mass of 58 kDa. The optimal temperature was around 53 degrees C at pH 7.0, and the optimal pH was from 5.5 to 9.5. The enzyme was stable between pH 5 and 10 for 19 h at 25 degrees C, and retained its activity up to 53 degrees C on 30 min of incubation at pH 7.0. The rates of hydrolysis of cholesteryl esters of different fatty acids were in the following order: linoleate > oleate > stearate > palmitate > caprylate > myristate > laurate, caprate > caproate > butyrate, acetate. Addition of (tauro)cholate to a final concentration of 100 mM markedly promoted the hydrolysis of triglycerides of short-, medium-, and long-chain fatty acids. When used with taurocholate, the enzyme acted as an effective cleaner for contact lenses stained with lipids consisting of cholesteryl oleate, tripalmitin, and stearyl stearate.  相似文献   

18.
During energy-demanding periods of the annual cycle such as migration or during cold days in winter, birds store fat comprised mostly of 16- or 18-carbon unsaturated fatty acids. In such situations, birds may feed selectively on foods with specific fatty acids that enable efficient fat deposition. We offered wild-caught yellow-rumped warblers Dendroica coronata paired choices between semi-synthetic diets that differed only in their fatty acid composition. Warblers strongly preferred diets containing long-chain (18:1; carbon atoms:double bonds) unsaturated, unesterified fatty acids to diets containing long-chain saturated, unesterified fatty acids (18:0) and they preferred diets containing mono-unsaturated fats (18:1) to diets containing poly-unsaturated fats (18:2). The preference for diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids was consistent in birds tested one week after capture at 21°C, one month after capture when cold-acclimated (1°C), and six weeks after capture at 21°C. Birds acclimated to a diet with 50% of the fat comprised of unesterified stearic acid (18:0) lost mass and reduced their food intake when we reduced ambient temperature from 21°C to 11°C over three days. We conclude that especially in energy-demanding situations there are limits to the yellow-rumped warblers' ability to assimilate some long-chain saturated fatty acids and that this digestive constraint can explain in part why yellow-rumped warblers prefer diets containing long-chain unsaturated fatty acids to diets containing long-chain saturated fatty acids.  相似文献   

19.
We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1–400 atm) and temperature (23–40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.  相似文献   

20.
Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号