首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

2.
Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492–498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.  相似文献   

3.
4.
5.
The study of the effect of periplasmic glucan isolated from the root-nodule bacterium Sinorhizobium meliloti CXM1-188 on the symbiosis of another strain (441) of the same root-nodule bacterium with alfalfa plants showed that this effect depends on the treatment procedure. The pretreatment of alfalfa seedlings with glucan followed by their bacterization with S. meliloti 441 insignificantly influenced the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity) but induced a statistically significant increase in the efficiency of symbiosis (expressed as the masses of the alfalfa overground parts and roots). At the same time, the pretreatment of S. meliloti 441 cells with glucan brought about a considerable decrease in the nodulation parameters of symbiosis (the number of root nodules and their nitrogen-fixing activity decreased by 2.5–11 and 7 times, respectively). These data suggest that the stimulating effect of rhizobia on host plants may be due not only to symbiotrophic nitrogen fixation but also to other factors. Depending on the experimental conditions, the treatment of alfalfa plants with glucan and their bacterization with rhizobial cells enhanced the activity of peroxidase in the alfalfa roots and leaves by 10–39 and 12–27%, respectively.  相似文献   

6.
A study was conducted with the aim of evaluating the genetic diversity of alfalfa rhizobia isolated from volcanic soils in southern Chile and their ability to establish an effective symbiosis with alfalfa. Rhizobial strains isolated from nodules were identified and selected based on PCR analyses and acid tolerance. Symbiotic effectiveness (nodulation and shoot dry weight) of acid-tolerant rhizobia was evaluated in glasshouse experiments under acidic conditions. The results revealed that Sinorhizobium meliloti is the dominant species in alfalfa nodules with a high genetic diversity at strain level grouped in three major clusters. There was a close relationship (r 2 = 0.895, P ≤ 0.001, n = 40) between soil pH and the size of rhizobial populations. Representative isolates from major cluster groups showed wide variation in acid tolerance expressed on buffered agar plates (pH 4.5–7.0) and symbiotic effectiveness with alfalfa. One isolate (NS11) appears to be suitable as an inoculant for alfalfa according to its acid tolerance and symbiotic effectiveness at low pH (5.5). The isolation and selection of naturalized S. meliloti strains with high symbiotic effectiveness under acidic conditions is an alternative approach to improving the productivity of alfalfa and for reducing the application of synthetic fertilizers in Chile.  相似文献   

7.
Allocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants. The ß-glucuronidase (gus) gene was used as a reporter and expression studies were carried out by histochemical analyses on shoots, roots and actinorhizal nodules. While the 35S promoter was poorly expressed in the shoot apex and lateral roots, both the e35S and e35S-4ocs were found to drive high constitutive expression in the transgenic non-nodulated plants. In contrast, the UBQ1 promoter was very poorly expressed and appeared unsuitable for A. verticillata. We also showed that none of the promoters studied were active in the nodule infected cells, whatever the developmental stage studied.  相似文献   

8.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   

9.
In split-root systems of alfalfa (Medicago sativa L.), already existing nodules or arbuscular mycorrhizal roots suppress further establishment of symbiosis in other root parts, a phenomenon named autoregulation. Roots treated with rhizobial nodulation signals (Nod factors) induce a similar systemic suppression of symbiosis.In order to test the hypothesis that flavonoids play a role in this systemic suppression, split-root systems of alfalfa plants were inoculated on one side of the split-root system with Sinorhizobium meliloti or Glomus mosseae or were treated with Nod factor. HPLC-analysis of alfalfa root extracts from both sides of the split-root system revealed a persistent local and systemic accumulation pattern of some flavonoids associated with the different treatments. The two flavonoids, formononetin and ononin, could be identified to be similarily altered after rhizobial or mycorrhizal inoculation or when treated with Nod factor.Exogenous application of formononetin and ononin partially restored nodulation and mycorrhization pointing towards the involvement of these two secondary compounds in the autoregulation of both symbioses.  相似文献   

10.
K. Niehaus  D. Kapp  A. Pühler 《Planta》1993,190(3):415-425
Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.  相似文献   

11.
During effective symbiosis, rhizobia colonize their hosts, and avoid plant defence mechanisms. To determine whether the host defence responses can be elicited by the symbiotic bacteria, specific markers involved in incompatible pathogenic interactions are required. The available markers of alfalfa defence mechanisms are described and their use in the study of the symbiotic interaction discussed. As defence-related gene expression in roots is not always related to defence mechanisms, other model systems have been established allowing confirmation of an important role of bacterial surface components in alfalfa-Rhizobium meliloti interactions. Nod factors at high concentrations have been shown to elicit defence-like responses in Medicago cell suspensions and roots. Elicitation of defence mechanisms by high levels of Nod factors in Rhizobium-infected roots may be a part of the mechanism by which nodulation is feed-back regulated.The authors are with the Institut des Sciences Végétales, CNRS, F-91198 Gif-sur-Yvette cédex, France.  相似文献   

12.
Flavodoxins are electron carrier flavoproteins that are involved in the response to oxidative stress in bacteria and cyanobacteria. Recently, we obtained Sinorhizobium meliloti bacteria that overexpressed a flavodoxin from the cyanobacterium Anabaena variabilis [Redondo et al. (2009) Plant Physiology 149:1166–1178]. In the present work, tolerance to cadmium was evaluated in free-living transformed S. meliloti and in alfalfa plants nodulated by the flavodoxin-overexpressing rhizobia, in comparison with plants nodulated by wild-type bacteria. Overexpression of flavodoxin protected free-living S. meliloti from cadmium toxicity and had a positive effect on nitrogen fixation of alfalfa plants subjected to cadmium stress. Flavodoxin notably reduced cadmium-induced structural and ultrastructural alterations in alfalfa nodules. Putative protection mechanisms in flavodoxin-overexpressing nodules are discussed. Flavodoxin could have applications as a biotechnological tool to improve the symbiotic performance of alfalfa and other legumes in cadmium polluted soils.  相似文献   

13.
Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild-type strain, their rhizosphere counts were reduced more than 50% (P ≤ 0.01) relative to the wild type. These results suggest that stachydrine catabolism contributes to root colonization. DNA sequence analysis identified the mutated locus in S11 as putA, and the luxAB fusion in that gene was induced by proline as well as stachydrine. DNA that restored the capacity of mutant S10 to catabolize stachydrine contained a new open reading frame, stcD. All data are consistent with the concept that stcD codes for an enzyme that produces proline by demethylation of N-methylproline, a degradation product of stachydrine.  相似文献   

14.
The pattern and expression level of β-glucuronidase (gus) reporter gene regulated by six heterologous promoters were studied in transgenic Populus tremula × P. alba plants obtained by Agrobacterium-mediated transformation. Binary vector constructs used contained the following promoter sequences: the CaMV35S from cauliflower mosaic virus; its duplicated version fused to the enhancer sequence from alfalfa mosaic virus; CsVMV from cassava vein mosaic virus; ubiquitin 3 from Arabidopsis thaliana (UBQ3); S-adenosyl-L-methionine synthetase (Sam-s) from soybean; and the rolA from Agrobacterium rhizogenes. Histochemical staining of root, stem and leaf tissues showed phloem and xylem-specific gus expression under rolA promoter, and constitutive expression with the other putative constitutive promoters. Quantitative GUS expression of 10 – 15 independently transformed in vitro grown plants, containing each promoter, was determined by fluorimetric GUS assays. The UBQ3-gus fusion induced the highest average expression level, although an extensive variation in expression levels was observed between independent transgenic lines for all the constructs tested.  相似文献   

15.
The availability of bacterial genome sequences has created a need for improved methods for sequence-based functional analysis to facilitate moving from annotated DNA sequence to genetic materials for analyzing the roles that postulated genes play in bacterial phenotypes. A powerful cloning method that uses lambda integrase recombination to clone and manipulate DNA sequences has been adapted for use with the gram-negative α-proteobacterium Sinorhizobium meliloti in two ways that increase the utility of the system. Adding plasmid oriT sequences to a set of vehicles allows the plasmids to be transferred to S. meliloti by conjugation and also allows cloned genes to be recombined from one plasmid to another in vivo by a pentaparental mating protocol, saving considerable time and expense. In addition, vehicles that contain yeast Flp recombinase target recombination sequences allow the construction of deletion mutations where the end points of the deletions are located at the ends of the cloned genes. Several deletions were constructed in a cluster of 60 genes on the symbiotic plasmid (pSymA) of S. meliloti, predicted to code for a denitrification pathway. The mutations do not affect the ability of the bacteria to form nitrogen-fixing nodules on Medicago sativa (alfalfa) roots.  相似文献   

16.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

17.
18.
19.
In two published reports using monoclonal antibodies (MAbs) generated against whole cells, Olsen et al. showed that strain-specific antigens on the surface of cultured cells of Sinorhizobium meliloti were diminished or absent in the endophytic cells (bacteroids) recovered from alfalfa nodules, whereas two common antigens were not affected by bacterial differentiation (P. Olsen, M. Collins, and W. Rice, Can. J. Microbiol. 38:506–509, 1992; P. Olsen, S. Wright, M. Collins, and W. Rice, Appl. Environ. Microbiol. 60:654–661, 1994). The nature of the antigens (i.e., the MAb epitopes), however, were not determined in those studies. For this report, the epitopes for five of the anti-S. meliloti MAbs were identified by polyacrylamide gel electrophoresis-immunoblot analyses of the polysaccharides extracted from S. meliloti and Sinorhizobium fredii. This showed that the strain-specific MAbs recognized K antigens, whereas the strain-cross-reactive MAbs recognized the lipopolysaccharide (LPS) core. The MAbs were then used in the analysis of the LPS and K antigens extracted from S. meliloti bacteroids, which had been recovered from the root nodules of alfalfa, and the results supported the findings of Olsen et al. The size range of the K antigens from bacteroids of S. meliloti NRG247 on polyacrylamide gels was altered, and the epitope was greatly diminished in abundance compared to those from the cultured cells, and no K antigens were detected in the S. meliloti NRG185 bacteroid extract. In contrast to the K antigens, the LPS core appeared to be similar in both cultured cells and bacteroids, although a higher proportion of the LPS fractionated into the organic phase during the phenol-water extraction of the bacteroid polysaccharides. Importantly, immunoblot analysis with an anti-LPS MAb showed that smooth LPS production was modified in the bacteroids.  相似文献   

20.
Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It was found that inside Medicago truncatula nodules, NFP and LYK3 localize at the cell periphery in a narrow zone of about two cell layers at the nodule apex. This restricted accumulation is narrower than the region of promoter activity/mRNA accumulation and might serve to prevent the induction of defense-like responses and/or to restrict the rhizobium release to precise cell layers. The distal cell layer where the receptors accumulate at the cell periphery is part of the meristem, and the proximal layer is part of the infection zone. In these layers, the receptors can most likely perceive the bacterial Nod factors to regulate the formation of symbiotic interface. Furthermore, our Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicates that NFP and LYK3 form heteromeric complexes at the cell periphery in M. truncatula nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号