首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulations of mercury have been demonstrated in adrenal glands by light and electron microscopy with a highly sensitive histochemical technique. Rats were exposed to methyl mercury in drinking water (20 mg/l) for 7-180 days, or were given intraperitoneal injections of methyl mercury (daily dose 100 or 200 micrograms). The amount and location of the mercury deposits were dependent upon the exposure time, the method of administration and the amount administered. In rats exposed to methyl mercury in drinking water, accumulations were often observed in both the zona glomerulosa and reticularis. They appeared first in the zona glomerulosa of animals treated for 1 week. In the zona fasciculata, deposits were observed only in the animals treated for 50 to 180 days. In animals treated for 180 days the cytoplasm of the cells in the zona fasciculata was heavily vacuolated and distinct necrotic cells were observed in other cortical zones. In the chromaffin cells, a slight increase in the amount of deposits was observed with increasing exposure time. Both epinephrenic and norepinephrenic cells contained deposits. Only a few deposits were observed in the cortical and chromaffin cells of animals treated with intraperitoneal injections. Ultrastructural deposits were observed in the lysosomes of cortical cells and in both lysosomes and secretory granules of chromaffin cells.  相似文献   

2.
A method for light and electron microscopic demonstration of mercury sulfides and mercury selenides in mammalian tissue is presented. Silver ions adhering to the surface of submicroscopic traces of mercury sulfides or selenides in the tissue are reduced to metallic silver by hydroquinone. Physical development thereupon renders deposits of mercury sulfides or mercury selenide visible as spheres of solid silver. Examples of localization of mercury in the central nervous system and various organs from animals exposed to mercury chloride or methyl mercury chloride with or without additional sodium selenide treatment are presented. Selenium treatment results in a considerable increase in the amount of mercury that can be made visible by silver amplification. After mercury chloride treatment, most of the mercury is localized in lysosomes and is only rarely seen in secretory granules. After simultaneous selenium treatment, mercury is also found in nuclei of proximal tubule cells in the kidney and in macrophages. The "sulfide-osmium" method for ultrastructural localization of mercury suggested by Silberberg, Lawrence, and Leider (Arch Environ Health 19:7, 1969) and the light microscopic method using a photographic emulsion suggested by Umeda, Saito, and Saito (Jpn J Exp Med 39:17, 1969) have been experimentally analyzed and commented on.  相似文献   

3.
The autometallographic technique was used to demonstrate the localization of mercury in dorsal root ganglia of adult Wistar rats. The animals were either exposed to mercury vapour, 100 μg Hg m−3, 6 h day−1, 5 days per week, or treated with organic mercury in the drinking water, 20 mg CH3HgCl per litre, for 4 weeks. The effect of orally administered sodium selenite on the pattern of intracellular distribution of mercury in these two situations was investigated. In rats exposed to mercury vapour alone, faint staining was present in ganglion cells. The selenite induced a conspicuous increase in the number of stained cells and in the intracellular staining intensity. In rats treated with organic mercury, mercury deposits were detected within ganglion cells and macrophages. The number of mercury-containing cells was increased by co- administration of selenite. In addition, satellite cells, the capsule and vessel walls were faintly stained. Twenty weeks after cessation of the organic mercury treatment, mercury staining was reduced. Again, selenite treatment enhanced staining intensity. When studied using the electron microscope, mercury was restricted to lysosomes, irrespective of treatments. The present study shows that the deposition of autometallographic mercury in the dorsal root ganglia depends on the chemical type of mercury, the co-administration of selenite and the length of the survival period. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
In order to evaluate possible health effects of environmental exposure of humans towards methyl mercury species, relevant exposure experiments using methyl mercury chloride in aqueous solution and Chinese hamster ovary (CHO) cells were performed. The solution was monitored for the presence of monomethyl, dimethyl and elemental mercury by several analytical techniques including chromatographic as well as atomic absorption and mass spectrometric methods. Methyl mercury induces structural chromosomal aberrations (CA) and sister chromatid exchanges (SCE) in CHO cells. At a concentration of methyl mercury in the culture medium of 1.0 x 10(-6) M where the frequencies of CA and SCE are significantly elevated, the intracellular concentration was 1.99 x 10(-16) mol/cell. Possible biochemical processes leading to the cytogenetic effects are discussed together with toxicological consequences, when humans (e.g. workers at waste deposits) are exposed to environmental concentrations of methyl mercury.  相似文献   

5.
A histochemical technique which permits the simultaneous visualization of heavy metals and acid phosphatase at the ultrastructural level is described. The technique was applied to the anterior pituitary gland, the spinal cord and the liver. In all of the tested organs, both mercury and silver were found to accumulate primarily in the lysosomes, although small amounts of both metals could be observed in other organelles including endocytotic vesicles. In the anterior pituitary, few mercury deposits were found in the secretory granules.  相似文献   

6.
Autometallography was used to localize mercury in rat spinal cord after intraperitoneal administration of methylmercuric chloride (200 micrograms CH3HgCl daily). The technique permits small amounts of mercury sulfides and mercury selenides to be visualized by silver-enhancement. Mercury deposits were observed by light microscopy only in neurons. In all of the spinal cord segments selected (first cervical segment, C1; fifth cervical segment, C5; sixth thoracic segment, T6; and first lumbar segment, L1) the mercury was observed with cumulative dosages of 6000 micrograms CH3HgCl and greater. Laminae VII, VIII, and IX contained the majority of stained neurons, whereas laminae IV, V, VI, and X had a relatively lower density of mercury-containing neurons. Stained neurons were confined to specific cell groups, such as Clarke's column, nucleus intermedio-lateralis, nucleus cervicalis centralis, and nucleus dorsomedialis. At the ultrastructural level, mercury deposits were restricted to lysosomes of neurons and occasional accumulations in the lysosomes of ependymal cells.  相似文献   

7.
Summary The autometallographic silver enhancement method is a method for subcellular localization of some heavy metals, such as mercury. However, no quantitative estimate has been made of the amount of mercury demonstrated by the method. In this study, pellets of autometallographic silver grains were prepared from unfixed kidney slices of rats exposed i.p. to mercury chloride containing trace amounts of 203Hg. The slices were silver-enhanced, and subsequently all organic material was removed by enzymatic digestion. During all stages of the experiment the solutions and tissue were gamma-counted. The analysis showed that the final pellets contained approximately 30% of the mercury compared to that found in the slices prior to development and that the mercury was probably located in lysosomes.  相似文献   

8.
Summary The distribution of mercury in the spleen, liver, lymph nodes, thymus and bone marrow was studied by autometallography in mice exposed to mercuric chloride intraperitoneally. Application of immunofluorescence histochemistry and an autometallographic silver amplification method was employed to the same tissue section. Mercury was not only detected in macrophages marked by the antibody M1/70 but also in macrophage-like cells, which were either autofluorescent or devoid of fluorescent signals. These two cell types were identified as macrophages at the electron microscopical level. Autometallographically stained macrophages were observed in the spleen, lymph nodes, thymus and in Kupffer cells of the liver. Furthermore, mercury was observed in endothelial cells. No obvious pathological disturbances were observed at light and electron microscopical level. At the subcellular level mercury was localized in lysosomes of macrophages and endothelial cells.  相似文献   

9.
The presence of gold was investigated in sections of the adrenal glands from rats which had been exposed to intraperitoneal sodium aurothiomalate (32 to 120 mg). Gold was histochemically detected in cortical endocrine cells, chromaffin cells and in fibroblasts and macrophages of both the cortex and medulla. Invisible traces of gold were silver enhanced by autometallography making them readily visible at both the light and electron microscopic levels. The intracellular staining intensity was dose-dependent. In general, the number as well as the staining intensity of individual cells, were highest in the zona glomerulosa and zona reticularis. In gold-containing cells the silver-amplified deposits were present in lysosomes.  相似文献   

10.
The autometallographic silver enhancement method has been applied increasingly to detect trace amounts of mercury in preparations of biological tissue. It has, however, been difficult to establish the presence of a core of mercury within the silver grain by direct methods such as energy dispersive X-ray analysis. In the present work, a sample of autometallographic silver grains was prepared from kidneys of rats exposed to mercury in the drinking water. Frozen sections from the kidneys were silver-enhanced and subsequently all organic material was removed by enzymatic digestion. The remaining pellet of silver grains was analyzed by proton-induced X-ray emission (PIXE) and mercury was demonstrated in an amount of 0.1-0.5% compared to silver. In addition, it was demonstrated that two pools of catalytic mercury compounds exist, probably corresponding to sulfide- and selenium-bound mercury.  相似文献   

11.
The aim of this study was to measure the urinary mercury excretion in rats exposed to amalgam over a two months period. Animals were either exposed to mercury from 4 dental amalgams or fed the diet containing powdered amalgams. The results showed significantly higher mercury amount in urine of both exposed groups than in control. Even two months after the amalgam had been placed in rats teeth, the amount of mercury in the urine remained 4-5 times higher than in control, and 4 times higher than in rats exposed to diet containing powdered amalgam. The elevated urinary Hg amount was accompanied by an increased level of total protein in urine. In the same exposure period the excretion of total protein in urine of rats with amalgam fillings was 2 times higher than in control and 1.5 times higher than in rats exposed to amalgam through diet. Concentrations of mercury in the sera of all groups were below the detection limit of the method. The results show that amount of mercury and protein in the urine of rats were related to the mercury release from dental malgam.  相似文献   

12.
The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.  相似文献   

13.
The relative efficacy of thiol-containing mercurial scavengers was assayed by using cellular suspensions of erythrocytes or isolated hepatocytes. The blood cells incubated in a buffer (pH 7.4) containing 1 mM glucose (10% hematocrit) were exposed to 5 μM methyl mercuric chloride. In the absence of extracellular thiols the red blood cells took up more than 90% of methyl mercury from the surrounding medium during 5–10 min. This uptake was almost completely inhibited by dimercaptosuccinic acid (DMSA) (1 mM) and the same chelant could rapidly remove 80% of the mercury from ‘pre-loaded’ erythrocytes. Hepatocytes prepared according to the method of Seglen [11] in a suspension of 106 cells/ml in a buffer containing 5 mM glucose and 5 mg/ml of bovine serum albumin were also exposed to methyl mercuric chloride (4 μM). Almost 50% of the mercurial was taken up by the cells slowly during the incubation period of 240 min. DMSA (1 mM) almost completely blocked the methyl mercury binding by the hepatocytes. 2-Mercaptopropionylglycin (Thiola) or mercaptosuccinic acid (MSA) was almost as effective mercurial scavengers as DMSA in hepatocytes and in red blood cells. Diethyldithiocarbamate (DDC) and dimercaptopropanol (BAL) were considerably less effective than DMSA to inhibit the mercurial binding to hepatocytes. Experiments in vivo have shown that DMSA is a better mercurial chelator than Thiola or MSA, whereas DDC and BAL may both be considered to be inapplicable in methyl mercury poisonings. Our cellular assay provides preliminary information of the efficiency of chelating thiols and may serve as a useful first approximation when planning further experiments.  相似文献   

14.
Dental amalgam mercury exposure in rats   总被引:2,自引:0,他引:2  
The aim of this study was to measure the distribution of mercury, in tissues of rats exposed to amalgam over a two months period. Possible interaction of mercury with copper and zinc in organs was also evaluated. Rats were either exposed to mercury from 4 dental amalgams, or fed the diet containing powdered amalgam during two months. Mercury was measured in the kidney, liver and brain, copper in kidney and brain and zinc in kidney. The results showed significantly higher concentrations of mercury in the kidneys and the brains of rats in both exposed groups compared to control. Even after two months of exposure to mercury brain mercury concentration in rats with amalgam fillings was 8 times higher than in the control and 2 times higher than in rats exposed to amalgam supplemented diet. The highest mercury concentration in the latter group was found in the kidneys and it was 5 times higher than in the control group. We found no significant differences between mercury levels in exposed and control rat's liver. Exposure to mercury from dental amalgams did not alter the concentrations of copper and zinc in the tissues. Histopathological analyses of rats tissues did not show any pathological changes. These results support previously proposed nose-brain transport of mercury released from dental amalgam fillings.  相似文献   

15.
L. rohita was exposed to identical concentrations of inorganic and methyl mercury (HgCl2 and CH3HgCl) and the gills were studied for mercury bioaccumulation and histological changes. In methyl mercury exposed group the mercury level in the gills continuously increased til the end of the exposure period whereas the level started decreasing from the day 30 onwards in the other group even though the exposure was continued for 60 days. Histological changes were similar in inorganic and methyl mercury treated fish except the higher intensity observed in the latter treatment. Under depuration for 15 days the clearance rate of accumulated mercury and subsequent histological recovery in the gills were less prominent in fish pretreated with methyl mercury.  相似文献   

16.
Magos et al reported the effect of 3-amino-1,2,4-triazole on mercury uptake by in vitro human blood samples and the mercury contents in blood and brain of rats exposed to metallic mercury vapor. The authors described the oxidation of metallic mercury by human blood cells having different catalase activities, hypocatalasemia and acatalasemia, with or without hydrogen peroxide. Kudsk found that ethyl alcohol inhibited the uptake of metallic mercury by blood in vitro and in vivo. These findings raise a question as to whether or not the inhibition by ethyl alcohol of the uptake of mercury by the blood is due to a direct reaction between ethyl alcohol and the catalase-hydrogen peroxide complex. The present report deals with the mechanism of metallic mercury oxidation in vitro by catalase using ethyl alcohol.  相似文献   

17.
Phenobarbital injections to rats given a low oral dose level of methl mercury for 2 or 4 wk decreased methyl mercury-induced ultrastructural alterations in kidney proximal tubule cells, increased urinaryexcretion of inorganic mercury and increased blood concentrations of methylmercury. These effects were not seen after 2 wk of treatment but were highly significant after 4 wk.  相似文献   

18.
This article reviews literature data concerning the genotoxicity of 29 mercury-containing agents, including laboratory compounds as well as ingredients of preparations used as fungicides, dyes, disinfectants and drugs. A variety of genetic end-points were investigated in bacteria, yeasts, moulds, plants, insects, cultured cells from fishes, rodents or humans, aquatic organisms, amphibians, mammalia and exposed humans. The overall evaluation is quite complex. Mercury compounds failed to induce point mutations in bacteria but often exerted clastogenic effects in eukaryotes, especially by binding SH groups and acting as spindle inhibitors, thereby causing c-mitosis and consequently aneuploidy and/or polyploidy. Inorganic mercury compounds were also found to induce the generation of reactive oxygen species and glutathione depletion in cultured mammalian cells. Although different mercury compounds tended to produce qualitatively comparable genetic effects, which suggests the involvement of a common toxic entity, methylmercury derivatives and other ionizable organomercury compounds were more active in short-term tests than either non-ionizable mercury compounds (e.g., dimethylmercury) or inorganic mercury salts (e.g., mercuric chloride). The results of cytogenetic monitoring in peripheral blood lymphocytes of individuals exposed to elemental mercury or mercury compounds from accidental, occupational or alimentary sources were either negative or borderline or uncertain as to the actual role played by mercury in some positive findings. Both genotoxic and non-genotoxic mechanisms may contribute to the renal carcinogenicity of mercury, which so far has been convincingly demonstrated only in male rodents treated with methylmercury chloride.  相似文献   

19.
As a death factor of T cells and Natural Killer (NK) cells, Fas Ligand (FasL) is stored in association with secretory lysosomes. Upon stimulation, these cytotoxic granules are transported to the cell membrane where FasL is exposed on the cell surface, shed or secreted. It has been noted before that the proline-rich domain within the cytosolic part of FasL is required for its vesicular association. However, the molecular interactions involved in targeting FasL to secretory lysosomes or to the plasma membrane have not been elucidated. We now identified a family of structurally related proteins that upon co-expression with FasL reallocate the death factor from a membrane to an intracellular localization. Members of this protein family are characterized by a similar domain structure and include FBP17, PACSIN1-3, CD2BP1, CIP4, Rho-GAP C1 and several hypothetical proteins. We show that all tested members of this "FCH/SH3-family" co-precipitate FasL from transfectants. The interactions strictly depend on functional SH3 domains within the FCH/SH3 proteins. Since co-expression of FasL with individual FCH/SH3 proteins dramatically alters the intracellular localization of FasL especially in non-hematopoietic cells, our data suggest that FCH/SH3 proteins might play an important role for the subcellular distribution and lysosomal association of FasL.  相似文献   

20.
Dissociated anterior pituitary cells derived from estrogen-treated female rats were incubated with radioiodinated cationic ferritin (CFI) for 2 min and subsequently in the absence of CFI for varying periods of time up to 3 hr in order to quantitate, using electron microscopic autoradiography, the distribution of retrieved plasma membrane in these cells. Following a 2-min incubation with CFI, autoradiographic grains were found to be associated almost exclusively with the plasma membrane. With increasing periods of incubation in the absence of CFI, grain-density analysis revealed increasing levels of CFI in multiple intracellular organelles. The levels of CFI were greatest for the lysosomes, intermediate for the mature secretory granules, and least for the Golgi cisternae and immature secretory granules. These findings are consistent with the idea that a portion of the retrieved plasma membrane is degraded in lysosomes and that the remainder is recycled to organelles comprising the secretory pathway to be reutilized in successive waves of the secretory cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号